Configurations spaces, algebraic topology and operads: Tutorials

Najib Idrissi - Université Paris Cité - https://idrissi.eu/class/23-cimpa
Lecture given at the CIMPA school "Crossroads of geometry, representation theory and higher structures"

This file contains the exercises for the tutorials. Thanks to Victor Roca i Lucio and Pedro Tamaroff for helping out!

Exercices

- 1. Let I=(0,1). Prove that $\mathrm{Conf}_I(r)$ is homeomorphic to $\Sigma_r \times \overset{\circ}{\Delta}{}^r$, where $\overset{\circ}{\Delta}{}^r = \{t \in I^{r+1} \mid \sum_{i=0}^r t_i = 1\}$. (Hint: draw a picture!)
- 2. Prove that $\operatorname{Conf}_{\mathbb{R}^n}(2)$ is homeomorphic to $S^{n-1} \times \mathbb{R}_{>0} \times \mathbb{R}^n$. (Hint: think "angle, radius, center".)
- 3. (Fadell-Neuwirth fibrations.) Given a manifold M, consider the map π_1 : $\operatorname{Conf}_M(r) \to M$, $\pi_1(x_1, \dots, x_r) = x_1$ that forgets everything but the first point.
 - a) What is the fiber $F_{\pi} = \pi^{-1}(\{x_0\})$ (for some fixed x_0) of π ?
 - b) Let $(y_1, ..., y_m) \in \mathrm{Conf}_M(m)$ be a fixed configuration with $m \geq 1$ and let $Y = M \setminus \{y_1, ..., y_m\}$. Prove that $\mathrm{Conf}_Y(r) \to Y$ is split, i.e., it is isomorphic to the product bundle $Y \times F \to Y$.
 - c) Suppose that G is a Lie group and let $x_0 \in G$. Show that there exists a group morphism $\theta: G \to \operatorname{Homeo}(G)$ such that $\theta(x)(x) = x_0$ and $\theta(x_0)(x) = x$ for all $x \in G$.
 - d) Use is to show that $\pi : \mathrm{Conf}_G(r) \to G$, $(x_1, \dots, x_r) \mapsto x_1$ is split, i.e., it is isomorphic to the product bundle $G \times F_\pi \to G$.
 - e) To what is $Conf_{S^1}(r)$ diffeomorphic?
 - f) Prove that $Conf_{S^3}(r)$ is diffeomorphic to $S^3 \times Conf_{\mathbb{R}^3}(r-1)$.
- 4. Let A = S(V) be a free graded algebra on some graded vector space $V = \{V^n\}_{n \geq 0}$. Prove that as an algebra, there exists an isomorphism $A = \mathbb{Q}[V^{\text{even}}] \otimes \Lambda(V^{\text{odd}})$, where $V^{\text{even}} = \bigoplus_k V^{2k}$ and $V^{"odd"} = \bigoplus_k V^{2k+1}$.
- 5. Compute the ranks of the rational homotopy groups of S^n . (You can use the fact that if (S(V), d) is a minimal model of X, then the rank of $\pi_k(X)$ is equal to the dimension of V^k).
- 6. Recall that, as a ring, we have:

$$H^*(\mathbb{CP}^r) = S(x)/x^{r+1} = \mathbb{Q}(1, x, x^2, \dots x^r),$$
 where $\deg x = 2$.

- a) Is $H^*(\mathbb{CP}^r)$ minimal? If not, find a minimal CDGA quasi-isomorphic to it.
- b) Use that minimal CDGA to prove that \mathbb{CP}^r is a formal space.
- 7. Find the ranks of the rational homotopy groups $\pi_k(S^n)$ and $\pi_k(\mathbb{CP}^n)$
- 8. (Difference between real and rational models.) In Example 2.84, we defined (for $\alpha \in \mathbb{Q}$): $A_{\alpha} = (S(e_2, x_4, y_7, z_9), d_{\alpha}e = 0, d_{\alpha}x = 0, d_{\alpha}y = x^2 + \alpha e^4, d_{\alpha}z = e^5)$. Prove that A_{α} and A_{β} are quasi-isomorphic if and only if α/β is a square.
- 9. Prove that any element of $H^*(\operatorname{Conf}_{\mathbb{R}^n}(r))$ is a linear combination of terms of the form $\omega_{i_1j_1} \dots \omega_{i_kj_k}$ with $i_1 < \dots < i_k$ and $i_1 < j_1, \dots, i_k < j_k$.
- 10. Using the description of $H^*(Conf_{\mathbb{R}^n}(r))$ and the fact that this space is formal, find a minimal model of $Conf_{\mathbb{R}^n}(3)$, try to do the same for every r.
- 11. Use it to compute the ranks of the homotopy groups of $Conf_{\mathbb{R}^n}(r)$.

References for the solution

• [FN] Edward Fadell and Lee Neuwirth. "Configuration Spaces", *Math. Scand.* 10 (1962), pp. 111-118. DOI:10.7146/math.scand.a-10517

- [FOT] Yves Félix, John Oprea, Daniel Tanré. *Algebraic Models in Geometry*. Oxford University Press (2008). ISBN 978-0-19-920651-3.
- [I] Najib Idrissi. *Real Homotopy of Configuration Spaces*: Peccot Lecture, Collège de France, March and May 2020. Lecture Notes in Mathematics 2303. Springer (2023). ISBN: 978-3-031-04427-4. DOI:10.1007/978-3-031-04428-1.
 - Note: a preprint of the book is available at https://hal.science/hal-03821309.
- [K] Ben Knudsen. Configuration spaces in algebraic topology. arXiv:1803.11165.

Reference for each exercise

- 1. [K] Example 2.1.2
- 2. [K] Example 2.1.3
- 3. Everything is found in the paper [FN].
- 4. [FOT] right after Definition 2.6.
- 5. [FOT] Example 2.43
- 6. [FOT] Example 2.44
- 7. Same examples as previous two. The proof that V^n has the rank of $\pi_n(X)$ is Theorem 2.50 there.
- 8. [FOT] Example 2.38.
- 9. [I] Lemma 2.89 (the result is not due to me, of course!)
- 10. [I] Theorem 2.103 (same comment)
- 11. Same reference (and same comment)