UP-SU-USPN 4 mars 2022

Homotopy II: Exam

M2 Fundamental Mathematics

Duration: 3 hours. Printed or handwritten notes are allowed. Electronic devices are forbidden. The exam is 2 pages long. Write in French or English and justify your answers.

Exercise A. Uniqueness of lifts

Let \mathcal{M} be a model category and let $A, Y \in \mathcal{M}$ be two objects. The category $\mathcal{M}_{A,Y}$ has as objects triples $(X, f: A \to X, g: X \to Y)$, and $\operatorname{Hom}_{\mathcal{M}_{A,Y}} ((X, f, g), (X', f', g')) \coloneqq \{h: X \to X' \mid hf = f', g'h = g\}.$

1. Prove that $\mathcal{M}_{A,Y}$ is a model category with fibrations, cofibrations, and weak equivalences being the same as in \mathcal{M} .

$$\begin{array}{ccc}
A & \xrightarrow{f} & X \\
\downarrow i & & \downarrow p \\
B & \xrightarrow{g} & Y
\end{array}$$

This is Theorem 7.6.5 in:

Hirschhorn, P.: *Model Categories and their Localizations*. Mathematical Surveys and Monographs 99. American Mathematical Society, Providence, RI (2003). DOI:10.1090/surv/099.

Note that there was a mistake in the handed-out version of the exam (corrected during the exam). One needs to fix some morphism $\phi: A \to Y$ and look at the subcategory of $\mathcal{M}_{A,Y}$ consisting of objects (X,f,g) such that $gf=\phi$. I've given full points for the question even if the proof of MC1 was missing. Sorry about that.

2. Consider a commutative square as on the side, where i is a cofibration and p is an acyclic fibration. Prove that any two lifts $l, l': B \to X$ (that fit in the commutative square) are homotopic when seen as morphism in $\mathcal{M}_{A.Y}$. (Hint: factor $B \cup_A B \to B$ using MC5.)

The proof can be found in Section 7.6.12 of the book. A little argument is needed to explain why we can choose a left homotopy ((B, i, pf)) is cofibrant because i is a cofibration).

Exercise B. Sharp morphisms and right properness

A general reference for this exercise is Section 2 of:

Rezk, C.: Fibrations and homotopy colimits of simplicial sheaves. arXiv:math/9811038. Section 2.

Let \mathcal{M} be a model category. A morphism $p: X \to Y$ is called *sharp* when, for any commutative diagram as displayed on the side, if both squares are pullbacks $(A = A' \times_{B'} B, A' = B' \times_Y X)$ and j is a weak equivalence, then i is a weak equivalence.

1. Prove that every fibration is sharp if and only if \mathcal{M} is *right proper*, i.e., the pullback of a weak equivalence along a fibration is a weak equivalence.

Consider the category $I = \{0 \to 2 \leftarrow 1\}$ and equip $\mathcal{M}^I = \operatorname{Fun}(I, \mathcal{M})$ with the injective model structure (weak equivalences and cofibrations are defined object-wise).

2. Prove that a diagram $\{X \to Z \leftarrow Y\} \in \mathcal{M}^I$ is fibrant if and only if Z is fibrant and both maps in the diagram are fibrations.

Seen in class. One needs to prove that $\{X \to Z \leftarrow Y\}$ has the RLP with respect to any acyclic cofibration (which are defined pointwise). Note that it is not enough to construct the lift pointwise, as this may not produce a morphism of diagrams. Instead, one should start by constructing the lift to Z, then draw a commutative square to construct a lift to X (or Y) which makes a morphism of diagrams.

UP-SU-USPN 4 mars 2022

For the next two questions, let us assume that ${\mathcal M}$ is right proper.

3. Prove that for $\{X \to Z \leftarrow Y\} \in \mathcal{M}^I$, if $X \to Z$ a fibration and X, Y, Z are fibrant, then the pullback $X \times_Z Y$ is weakly equivalent to the homotopy pullback (= holim_I of the diagram).

4. Prove that the same conclusion holds if we assume that $X \to Z$ is sharp rather than a fibration.

There is a little subtlety here. If in question 3 you argued that $X \times_Z^h Y = X \times_Z Y'$ where $Y' \to Z$ is a replacement of $Y \to Z$ by a fibration and used the fact that fibrations are sharp, then you have a little more work to do here. Indeed, to compute the homotopy pullback, you need to replace the whole thing by a fibrant diagram, so $X \to Z$ also needs to be replaced.

Let $\mathcal{M}=\mathrm{Ch}_{\geq 0}(\mathbb{Z})$, with the projective model structure. Let us moreover equip $\mathcal{M}^I=\left(\mathrm{Ch}_{\geq 0}(\mathbb{Z})\right)^I$ with the injective model structure of diagrams as above.

5. Let $\{X \to Z \leftarrow Y\}$ be a diagram of \mathbb{Z} -modules such that $X \to Z$ is surjective. Prove that $\ker(X \to Z)$ is isomorphic to $\ker(X \times_Z Y \to Y)$.

The astute ones will have noted that the surjectivity assumption is not necessary. Let $f: X \to Z$ and $g: Y \to Z$, then:

$$\ker(X \times_Y Z \to Y) = \{(x, y) \mid f(x) = g(y), y = 0\} = \{x \in X \mid f(x) = 0\} = \ker(X \to Z).$$

- 6. Prove that $Ch_{\geq 0}(\mathbb{Z})$ is right proper (hint: use the five lemma).
- 7. Let $d \ge 1$ be an integer, let M be a \mathbb{Z} -module, and let $\Sigma^d M$ be M viewed as a chain complex concentrated in degree d. Compute the homotopy limit of the diagram $\{0 \to \Sigma^d M \leftarrow 0\}$.

According to the above, and since $\Sigma^d M$ is fibrant, we just need to replace one of the two maps by a fibration. A canonical way is to take the cone

$$C(\Sigma^d M) = \left(\Sigma^d M \oplus \Sigma^{(d-1)} M, d(x, y) = (y, 0)\right).$$

Then $0 \times_{\Sigma^d M}^h 0 = C(\Sigma^d M) \times_{\Sigma^d M} 0 = \Sigma^{d-1} M$. Note that if d = 0, then $0 \to \Sigma^0 M$ is already a fibration so the homotopy pullback is the classical pullback, i.e., the null chain complex.

Let $\mathcal{M}=s\mathcal{S}et$ be endowed with the usual model structure. Let $\pi\colon\Lambda_1^2\to\Delta^1$ be the unique simplicial map which is given on vertices by $\pi(0)=0$, $\pi(1)=\pi(2)=1$.

8. Prove that π is **not** a Kan fibration.

Define a square:

$$\begin{array}{ccc}
\Lambda_1^1 & \stackrel{f}{\to} & \Lambda_1^2 \\
\downarrow & & \downarrow p \\
\Delta^1 & \stackrel{}{\to} & \Delta^1
\end{array}$$

By f(1)=2, and the bottom map is the identity. If a lift $l:\Delta^1\to\Lambda^2_1$ existed, it would correspond to a 1-simplex of $x=l(0\to 1)\in\Lambda^2_1$ such that $d_0(x)=2$ and $\pi\bigl(d_1(x)\bigr)=0$, i.e., an edge from vertex 0 to vertex 2. Such an edge does not exist, so there is no lift.

9. Construct a map $\sigma: \Delta^1 \to \Lambda^2_1$ such that $\pi\sigma = \mathrm{id}_{\Delta^1}$ and $\sigma\pi$ is homotopic to the identity of Λ^2_1 .

Just take $\sigma(0)=0$ and $\sigma(1)=1$ (and $\sigma(0\to 1)=0\to 1\in\Lambda^2_1$.

10. \bigstar Prove that π is sharp.

The above shows that π is deformation retraction. Taking the pullback of π along any map remains a deformation retraction, so one can could by (MC2).

UP-SU-USPN 4 mars 2022

Exercise C. Model category of equivalence relations

This exercise is taken from:

Larusson, F.: The homotopy theory of equivalence relations. arXiv:math/0611344v2.

Let $\mathcal{E}q$ be the category whose objects are pairs (X, \sim) where X is a set and \sim is an equivalence relation on X, and whose morphisms are maps which preserve equivalence, i.e.:

$$\operatorname{Hom}_{\mathcal{E}_q}\big((X,\sim_X),(Y,\sim_Y)\big)\coloneqq\{f\colon X\to Y\mid \forall x,x'\in X,\ x\sim_X x'\Longrightarrow f(x)\sim_Y f(x')\}.$$

We will often allow ourselves the notational shortcut $X=(X,\sim_X), Y=(Y,\sim_Y)$, etc.

For the first two questions, it's not possible to assume from the beginning that the underlying set of the (co)product is the (co)product of the underlying set; a proof is needed.

1. Prove that the categorical product is given by $(X, \sim_X) \times (Y, \sim_Y) = (X \times Y, \sim_{X \times Y})$, where:

$$(x,y) \sim_{X\times Y} (x',y') \Leftrightarrow (x \sim_X x' \text{ and } y \sim_Y y').$$

2. Let $A = \{a, b, c\}$ with $a \sim b \nsim c$; $B = \{x, y\}$ with $x \sim y$; and $C = \{u, v\}$ with $u \nsim v$. Let $f: C \to A$ be given by f(u) = b, f(v) = c, and $g: C \to B$ be given by g(u) = x and g(v) = y. Prove that in the pushout $A \cup_C B$, one has $a \sim c$. (A picture can help.)

For $X \in \mathcal{E}q$ and $x \in X$, we let $[x] = \{x' \in X \mid x' \sim_X x\}$ and $(X/\sim) \coloneqq \{[x] \mid x \in X\}$. For any $X, Y \in \mathcal{E}q$, a morphism $f: X \to Y$ in $\mathcal{E}q$ is called a:

- Cofibration if $f: X \to Y$ is injective as a map of sets.
- Fibration if, for all $x \in X$, the restriction $f|_{[x]}: [x] \to [f(x)]$ is surjective.
- Weak equivalence if the induced map on the quotient $f_*: (X/\sim) \to (Y/\sim)$ is bijective.
- 3. Let $j: \{0\} \to (\{0,1\}, \sim)$ with $0 \sim 1$. Prove that a morphism is a fibration if, and only if, it has the right lifting property against j. (You may not yet assume that $\mathcal{E}q$ is a model category.)

Arguing that f is a fibration and that j is an acyclic cofibration and that fibrations lift against acyclic cofibrations is insufficient. We don't know yet that we have a model category! Same deal for the next question.

4. Let $i_0: \emptyset \to \{0\}$ and let $i_1: (\{0,1\}, \sim_1) \to (\{0,1\}, \sim_2)$ where $0 \not\sim_1 1$ and $0 \sim_2 1$. Prove that a morphism is an acyclic fibration if, and only if, it has the right lifting property against i_0 and i_1 .

Note that even if $f: X \to Y$ is surjective, it's possible that f is not a fibration. For $x \in X$, every element of [f(x)] has a preimage... But this preimage may not belong to [x]! A counterexample is right in the question: i_1 is surjective, but it is not a fibration, as e.g., i_1 : $[0] = \{0\} \to [i_1(0)] = \{0, 1\}$ is not surjective.

5. Prove that $\mathcal{E}q$ is a cofibrantly generated model category, with generating cofibrations $\mathcal{I} = \{i_0, i_1\}$ and generating acyclic cofibrations $\mathcal{J} = \{j\}$.

Since we don't know that we have a model category, this needs to be proved. Thanks to what we've done in the previous questions, almost all the hypotheses of the theorem on existence of a cofibrantly generated model structure are verified.

Let an equivalence relation \approx on $\operatorname{Hom}_{\mathcal{E}q}(X,Y)$ be defined, for $f,g\colon X\to Y$, by:

$$f \approx g \iff (\forall x \in X, f(x) \sim_Y g(x)).$$

In what follows, we will denote by [X, Y] the hom-set equipped with this equivalence relation.

6. Prove that two morphisms f, g are homotopic in $\mathcal{E}q$ if and only if $f \approx g$.

UP-SU-USPN

Since all objects are fibrant and cofibrant, you may choose a left or right homotopy, but this needs to be said.

- 7. Prove that the functor $\pi: \mathcal{E}q \to \mathcal{S}et$, given on objects by $X \mapsto X/\sim_X$, induces an equivalence of categories $\operatorname{Ho}(\mathcal{E}q) \simeq \mathcal{S}et$.
- 8. Prove that the pullback of a weak equivalence along a fibration is a weak equivalence.
- 9. ★ Prove that the pushout of a weak equivalence along a cofibration is a weak equivalence.
- 10. Prove that there is an isomorphism in $\mathcal{E}q$, natural in $A, X, Y \in \mathcal{E}q$:

$$[A, [X, Y]] \cong [A \times X, Y].$$

Let $i: A \to B$ be a cofibration and $p: X \to Y$ be a fibration (in $\mathcal{E}q$). Consider the "pullback-corner":

$$(i^*, p_*): [B, X] \to [A, X] \times_{[B, Y]} [A, Y].$$

- 11. Prove that (i^*, p_*) is a fibration in $\mathcal{E}q$.
- 12. Prove that this fibration is acyclic if either one of the morphisms i or p is acyclic.