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Introduction: configuration spaces



Configuration spaces

M: n-manifold

ConfM(r) := {(x1, . . . , xr) ∈ Mr | ∀i 6= j, xi 6= xj}
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Applications

Applications

• braid groups;

• iterated loop
spaces;

• Goodwillie–
Weiss manifold
calculus;

• Gelfand–Fuks
cohomology;

• motion
planning.

Braid τ ∈ Br = path in ConfD2(r)

More generally ConfΣ(r)⇒ surface braid groups
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Applications

Applications

• braid groups;
• iterated loop
spaces;

• Goodwillie–
Weiss manifold
calculus;

• Gelfand–Fuks
cohomology;

• motion
planning.

ΩnX = {γ : Dn → X | γ(∂Dn) = ∗}

→ has algebraic (operadic) structure encoded by
ConfDn [May, Boardman–Vogt]
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Applications

Applications

• braid groups;
• iterated loop
spaces;

• Goodwillie–
Weiss manifold
calculus;

• Gelfand–Fuks
cohomology;

• motion
planning.

Goal: compute

Emb(M,N) = {f : M ↪→ N} ⊂ Map(M,N)

→ “approximated” by a subspace of∏
r≥0

Map(ConfM(r),ConfN(r))

under good conditions
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Applications

Applications

• braid groups;
• iterated loop
spaces;

• Goodwillie–
Weiss manifold
calculus;

• Gelfand–Fuks
cohomology;

• motion
planning.

Characteristic classes of foliations live in

H∗
cont(Γc(M, TM))

→ computed by a spectral sequence involving
configuration spaces [Cohen–Taylor]
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Applications

Applications

• braid groups;
• iterated loop
spaces;

• Goodwillie–
Weiss manifold
calculus;

• Gelfand–Fuks
cohomology;

• motion
planning.

Want to move several robots at the same time

🤖

🤖🤖

🤖🤖

🤖

???

⇐⇒ find a section of:

Map([0, 1],ConfM(r))→ ConfM(r)× ConfM(r)
γ 7→ (γ(0), γ(1))

Minimum number of domains of continuity
(“topological complexity”) depends on homotopy
type of ConfM(r) [Farber]
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Homotopy invariance

In all these applications: we want the homotopy type of ConfM(r)

Long-standing conjecture
For simply connected closed manifolds M ' N⇒ ConfM(r) ' ConfN(r)

• Obviously wrong for open manifolds: R ' {0} but
ConfR(2) 6' Conf{0}(2).

• Counterexample for non-simply connected manifolds:
ConfL7,1(r) 6' ConfL7,2(r) (Longoni–Salvatore 2005)

Some evidence:

• H∗(ConfM(r)) X (Bödigheimer–Cohen–Taylor, Bendersky–Gitler)
• ΩConfM(r) X (Levitt)
• Σ∞ConfM(r) X (Aouina–Klein)
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Rational homotopy theory

Rational homotopy equivalence:

f : M→ N s.t. π∗(f )⊗Z Q is an isomorphism

Sullivan’s theory: for simply connected spaces,

M 'Q N ⇐⇒ Ω∗(M) ' Ω∗(N) (de Rham, PL… forms)

Model of M = comm. dg-algebra A ' Ω∗(M)
→ knows the rational/real homotopy type of M

Goal
Find a model of ConfM(r) from a model of M.
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Closed manifolds



Building block: Rn

Presentation of H∗(ConfRn(r)) [Arnold, Cohen]
• Generators: ωij of degree n− 1 (for 1 ≤ i 6= j ≤ r)
• Relations:

ω2
ij = ωji − (−1)nωij = ωijωjk + ωjkωki + ωkiωij = 0

Theorem (Arnold 1969)
Formality: H∗(ConfC(r)) ∼C Ω∗(ConfC(r)), ωij 7→ d log(zi − zj).

Theorem (Kontsevich 1999, Lambrechts–Volić 2014)
H∗(ConfRn(r)) ∼R Ω∗(ConfRn(r)) for all r ≥ 0 and n ≥ 2.

Corollary
The cohomology of ConfRn(r) determines its rational homotopy type.
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Idea of Kontsevich’s proof

H∗(ConfRn(r))
∼←− ???

∼−→ Ω∗(ConfRn(r))

i

j k

ω
ij

ωjk
+

i

j k
ωjk

ω
ki +

i

j k

ω
kiω

ij =

Key point: integrals of internal components vanish.
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Idea of Kontsevich’s proof

H∗(ConfRn(r))
∼←− ???

∼−→ Ω∗(ConfRn(r))

H∗(ConfRn(r)): graphs on r vertices mod local three-terms relations.

i

j k

ω
ij

ωjk
+

i

j k
ωjk

ω
ki +

i

j k

ω
kiω

ij = 0
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Idea of Kontsevich’s proof

H∗(ConfRn(r))
∼←−−−

proj.
Graphsn(r)

∼−→∫ Ω∗(ConfRn(r))

Replace relations by differentials:

i

j k

ω
ij

ωjk
+

i

j k
ωjk

ω
ki +

i

j k

ω
kiω

ij =
i

j k
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The Lambrechts–Stanley model

M: oriented closed manifold, A ∼ Ω∗(M): Poincaré duality model of M

LS model GA(r): inspired by Confr(M) = M×r \
⋃
i 6=j{xi = xj}

• “Generators”: A⊗r and the ωij from Confr(Rn),
• Arnold relations + symmetry p∗i (a)ωij = p∗j (a)ωij,
• dωij kills the dual of [∆ij].

Examples:

• GA(0) = R is a model of Conf0(M) = {∅} X

• GA(1) = A is a model of Conf1(M) = M X

• GA(2) =
(
A⊗2 ⊕ A · ω12, dω12 = ∆A

)
' A⊗2/(∆A) should be a model

of Conf2(M) = M2 \∆
• r ≥ 3: more complicated.
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Result

Theorem (I)
M: simply connected closed smooth manifold, A: any Poincaré duality
model of M, then:

GA(r) 'R Ω∗(ConfM(r)), ∀r ≥ 0.

Corollary (I, CW)
M 'R N =⇒ ConfM(r) 'R ConfN(r).
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Proof

Inspired by the ideas of Kontsevich: graphs decorated by elements of A,
replace relations by internal vertices, map into Ω∗ by integrals

GA(r)
∼←− GraphsR

∼−→ Ω∗(ConfM(r))

where R = resolution of A.

Need integrals of internal components to vanish =⇒ needs π1M = 0

and dimM ≥ 4 by degree counting
(Rk: dimM ≤ 3 =⇒ M = Sn → different methods)

Remark
Get another bigger model: GraphsR (cf. CW).
Benefit: quasi-free, good for homological algebra.
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Framed configurations

ConffrM(r) =


(x,B1, . . . ,Br) |
x ∈ ConfM(r),
Bi : basis of TxiM


1

2

3

4

Useful for applications, but more complicated (already for M = Rn!)

Theorem (CDIW)
Graphical model for (oriented) ConffrM(r) based on graphs decorated
by cohomology classes of M + cohomology of BSO(n).

Problem: depends on non-explicit integrals; no homotopy invariance
yet.
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Manifolds with boundary



Manifold gluing

M = M′ ∪N×R M′′

Goal: compute configuration
spaces “by induction”

ConfN×R = {ConfN×R(r)}r≥0 is a monoid (up to homotopy):

u1
u2

· v1v2
v3 7→

u1
u2

v1v2
v3

ConfM′ is a left module, ConfM′′ is a right module, and:

ConfM ' ConfM′ ⊗L
ConfN×R

ConfM′′ .
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Graphical models & Small model

Theorem (CILW)
Graphical model aGraphsN for the monoid ConfN×R, only depends on
the real homotopy type of N.

Remark: crossing with nontrivial contractible space makes Conf2
homotopy invariant [Raptis–Salvatore].

Theorem (CILW)
Graphical model mGraphsM′ for the left module ConfM. Only depends
on the real homotopy type of M if dimM ≥ 4 and π<1M = 0.
(Otherwise, depends on integrals.)

Theorem (CILW)
Quotient of mGraphsM′ = small “Lambrechts–Stanley-like” model,
depends on Poincaré–Lefschetz duality model of (M, ∂M).
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Surfaces



Splitting

Only simply connected surfaces = S2. What about others?

Oriented genus g surface:

Σg = (S2 \ {1, . . . , 2g}) ∪
( g⊔
i=1

S1 × R
)

• need models for ConfS2\{1,...,2g} and ConfS1×R

• also need algebraic structure: ConfS1×R is a monoid, acts on
ConfS2\{1,...,2g} (g times on the left, g times on the right)

• need orientation reversal on ConfS1×R to deal with left/right
• we do everything framed
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Points removed

S2 \ {1, . . . , 2g} and S1 × R are both instances of R2 \ {points}

=⇒ can use the fibration ConffrM\∗(r) ↪→ ConffrM(r + 1)→ FrM to get the
homotopy type inductively from ConffrR2(r) ' ConfR2(r)× SO(2)r

+ cyclic formality of the little disks operad:

Theorem (CIW)
ConffrS2\{1,...,2g} and ConffrS1×R together with all their algebraic (monoid,
orientation reversal, left/right actions) structures are formal.
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Result

Description of Σg =⇒ ConffrΣg is an “iterated Hochschild complex”

ConffrΣg '
⊗̂(1,1),...,(g,g)

ConffrS1×R

ConffrS2\{1,...,2g}.

Theorem (CIW)
Rational model Gfr

Σg
(r) for ConffrΣg(r) given by:(

H∗(Σg)
⊗r ⊗ S(θi)︸︷︷︸

H∗(BSO(2)r)

⊗ S(ωij)/(. . . );dωij = ∆ij,dθi = (2− 2g)voli
)
.

Proof:

Gfr
Σg(r)

∼←− BVGraphsΣg
∼−→ ⊗̂(1,1)...(g,g)

BV∨1
BV∨g,g ' Ω∗(ConffrΣg(r)).
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Where are operads?

Need to compactify configuration spaces for integrals to converge: add
virtual configurations with infinitesimally close points

1

3

2
4
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Where are operads?

Get a new algebraic structure: an operad

1

3

2

◦2 1
2 = 1

4

2
3
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Where are operads?

Right module structure on compactification of ConfM

1

2

3

4

◦2 1
2 =

1

2 5

3
4

if M is parallelized; otherwise, need framed configurations.
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Why operads?

In previous results:

• Kontsevich’s formality is compatible with the operad structure;

• LS model has a right module structure compatible with
Kontsevich’s formality if M is framed;

• graphical model for ConffrM is compatible with the
Khoroshkin–Willwacher model for the operad ConffrRn ;

• small model for ConffrΣg involves Tamarkin’s formality of ConfR2

and Ševera’s proof of formality of ConffrR2 .

Some applications:

• Goodwillie–Weiss manifold calculus;
• factorization homology.
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Thank you for your attention!
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