Real homotopy of configuration spaces

Najib Idrissi
Toric Topology Research Seminar @ Fields Institute (online)

Introduction: CONFIGURATION SPACES

CONFIGURATION SPACES

M: n-manifold

CONFIGURATION SPACES

M: n-manifold

$$
\operatorname{Conf}_{M}(r):=\left\{\left(x_{1}, \ldots, x_{r}\right) \in M^{r} \mid \forall i \neq j, x_{i} \neq x_{j}\right\}
$$

APPLICATIONS

Applications

- braid groups;

Braid $\tau \in B_{r}=$ path in $\operatorname{Conf}_{D^{2}}(r)$

More generally $\operatorname{Conf}_{\Sigma}(r) \Rightarrow$ surface braid groups

APPLICATIONS

Applications

- braid groups;
- iterated loop spaces;

$$
\Omega^{n} X=\left\{\gamma: D^{n} \rightarrow X \mid \gamma\left(\partial D^{n}\right)=*\right\}
$$

\rightarrow has algebraic (operadic) structure encoded by
Conf $_{D^{n}}$ [May, Boardman-Vogt]

APPLICATIONS

Applications

- braid groups;
- iterated loop spaces;
- GoodwillieWeiss manifold calculus;

Goal: compute

$$
\operatorname{Emb}(M, N)=\{f: M \hookrightarrow N\} \subset \operatorname{Map}(M, N)
$$

\rightarrow "approximated" by a subspace of

$$
\prod_{r \geq 0} \operatorname{Map}\left(\operatorname{Conf}_{M}(r), \operatorname{Conf}_{N}(r)\right)
$$

under good conditions

APPLICATIONS

Applications

- braid groups;
- iterated loop spaces;
- GoodwillieWeiss manifold calculus;
- Gelfand-Fuks cohomology;

Characteristic classes of foliations live in

$$
H_{\text {cont }}^{*}\left(\Gamma_{C}(M, T M)\right)
$$

\rightarrow computed by a spectral sequence involving configuration spaces [Cohen-Taylor]

APPLICATIONS

Applications

- braid groups;
- iterated loop spaces;
- GoodwillieWeiss manifold calculus;
- Gelfand-Fuks cohomology;
- motion planning.

Want to move several robots at the same time

\Longleftrightarrow find a section of:
$\operatorname{Map}\left([0,1], \operatorname{Conf}_{M}(r)\right) \rightarrow \operatorname{Conf}_{M}(r) \times \operatorname{Conf}_{M}(r)$ $\gamma \mapsto(\gamma(0), \gamma(1))$

Minimum number of domains of continuity ("topological complexity") depends on homotopy type of $\operatorname{Conf}_{M}(r)$ [Farber]

HOMOTOPY INVARIANCE

In all these applications: we want the homotopy type of $\operatorname{Conf}_{M}(r)$

НомотOPY INVARIANCE

In all these applications: we want the homotopy type of $\operatorname{Conf}_{M}(r)$
Long-standing conjecture
For simply connected closed manifolds $M \simeq N \Rightarrow \operatorname{Conf}_{M}(r) \simeq \operatorname{Conf}_{N}(r)$

Homotopy invariance

In all these applications: we want the homotopy type of $\operatorname{Conf}_{M}(r)$
Long-standing conjecture
For simply connected closed manifolds $M \simeq N \Rightarrow \operatorname{Conf}_{M}(r) \simeq \operatorname{Conf}_{N}(r)$

- Obviously wrong for open manifolds: $\mathbb{R} \simeq\{0\}$ but $\operatorname{Conf}_{\mathbb{R}}(2) \not \not 二 \operatorname{Conf}_{\{0\}}(2)$.

Homotopy invariance

In all these applications: we want the homotopy type of $\operatorname{Conf}_{M}(r)$
Long-standing conjecture
For simply connected closed manifolds $M \simeq N \Rightarrow \operatorname{Conf}_{M}(r) \simeq \operatorname{Conf}_{N}(r)$

- Obviously wrong for open manifolds: $\mathbb{R} \simeq\{0\}$ but $\operatorname{Conf}_{\mathbb{R}}(2) \not \not \operatorname{Conf}_{\{0\}}(2)$.
- Counterexample for non-simply connected manifolds: $\operatorname{Conf}_{L_{7,1}}(r) \not 千 \operatorname{Conf}_{L_{7,2}}(r)$ (Longoni-Salvatore 2005)

Homotopy invariance

In all these applications: we want the homotopy type of $\operatorname{Conf}_{M}(r)$
Long-standing conjecture
For simply connected closed manifolds $M \simeq N \Rightarrow \operatorname{Conf}_{M}(r) \simeq \operatorname{Conf}_{N}(r)$

- Obviously wrong for open manifolds: $\mathbb{R} \simeq\{0\}$ but $\operatorname{Conf}_{\mathbb{R}}(2) \not \not \operatorname{Conf}_{\{0\}}(2)$.
- Counterexample for non-simply connected manifolds: $\operatorname{Conf}_{L_{7,1}}(r) \not 千 \operatorname{Conf}_{L_{7,2}}(r)$ (Longoni-Salvatore 2005)

Some evidence:

- $H_{*}\left(\operatorname{Conf}_{M}(r)\right) \checkmark$ (Bödigheimer-Cohen-Taylor, Bendersky-Gitler)

Homotopy invariance

In all these applications: we want the homotopy type of $\operatorname{Conf}_{M}(r)$
Long-standing conjecture
For simply connected closed manifolds $M \simeq N \Rightarrow \operatorname{Conf}_{M}(r) \simeq \operatorname{Conf}_{N}(r)$

- Obviously wrong for open manifolds: $\mathbb{R} \simeq\{0\}$ but $\operatorname{Conf}_{\mathbb{R}}(2) \not \not \operatorname{Conf}_{\{0\}}(2)$.
- Counterexample for non-simply connected manifolds: $\operatorname{Conf}_{L_{7,1}}(r) \not 千 \operatorname{Conf}_{L_{7,2}}(r)$ (Longoni-Salvatore 2005)

Some evidence:

- $H_{*}\left(\operatorname{Conf}_{M}(r)\right) \checkmark$ (Bödigheimer-Cohen-Taylor, Bendersky-Gitler)
- $\Omega \operatorname{Conf}_{M}(r) \checkmark($ Levitt $)$

Homotopy invariance

In all these applications: we want the homotopy type of $\operatorname{Conf}_{M}(r)$

Long-standing conjecture

For simply connected closed manifolds $M \simeq N \Rightarrow \operatorname{Conf}_{M}(r) \simeq \operatorname{Conf}_{N}(r)$

- Obviously wrong for open manifolds: $\mathbb{R} \simeq\{0\}$ but $\operatorname{Conf}_{\mathbb{R}}(2) \not 千 \operatorname{Conf}_{\{0\}}(2)$.
- Counterexample for non-simply connected manifolds: $\operatorname{Conf}_{L_{7,1}}(r) \not 千 \operatorname{Conf}_{L_{7,2}}(r)$ (Longoni-Salvatore 2005)

Some evidence:

- $H_{*}\left(\operatorname{Conf}_{M}(r)\right) \checkmark$ (Bödigheimer-Cohen-Taylor, Bendersky-Gitler)
- $\Omega \operatorname{Conf}_{M}(r) \checkmark$ (Levitt)
- $\Sigma^{\infty} \operatorname{Conf}_{M}(r) \checkmark$ (Aouina-Klein)

RATIONAL HOMOTOPY THEORY

Rational homotopy equivalence:

$$
f: M \rightarrow N \text { s.t. } \pi_{*}(f) \otimes_{\mathbb{Z}} \mathbb{Q} \text { is an isomorphism }
$$

Rational homotopy theory

Rational homotopy equivalence:

$$
f: M \rightarrow N \text { s.t. } \pi_{*}(f) \otimes_{\mathbb{Z}} \mathbb{Q} \text { is an isomorphism }
$$

Sullivan's theory: for simply connected spaces,

$$
M \simeq_{\mathbb{Q}} N \Longleftrightarrow \Omega^{*}(M) \simeq \Omega^{*}(N) \text { (de Rham, PL... forms) }
$$

Rational homotopy theory

Rational homotopy equivalence:

$$
f: M \rightarrow N \text { s.t. } \pi_{*}(f) \otimes_{\mathbb{Z}} \mathbb{Q} \text { is an isomorphism }
$$

Sullivan's theory: for simply connected spaces,

$$
M \simeq_{\mathbb{Q}} N \Longleftrightarrow \Omega^{*}(M) \simeq \Omega^{*}(N) \text { (de Rham, PL... forms) }
$$

Model of $M=$ comm. dg-algebra $A \simeq \Omega^{*}(M)$

Rational homotopy theory

Rational homotopy equivalence:

$$
f: M \rightarrow N \text { s.t. } \pi_{*}(f) \otimes_{\mathbb{Z}} \mathbb{Q} \text { is an isomorphism }
$$

Sullivan's theory: for simply connected spaces,

$$
M \simeq_{\mathbb{Q}} N \Longleftrightarrow \Omega^{*}(M) \simeq \Omega^{*}(N) \text { (de Rham, PL... forms) }
$$

Model of $M=$ comm. dg-algebra $A \simeq \Omega^{*}(M)$
\rightarrow knows the rational/real homotopy type of M

Rational homotopy theory

Rational homotopy equivalence:

$$
f: M \rightarrow N \text { s.t. } \pi_{*}(f) \otimes_{\mathbb{Z}} \mathbb{Q} \text { is an isomorphism }
$$

Sullivan's theory: for simply connected spaces,

$$
M \simeq_{\mathbb{Q}} N \Longleftrightarrow \Omega^{*}(M) \simeq \Omega^{*}(N) \text { (de Rham, PL... forms) }
$$

Model of $M=$ comm. dg-algebra $A \simeq \Omega^{*}(M)$
\rightarrow knows the rational/real homotopy type of M
Goal
Find a model of $\operatorname{Conf}_{M}(r)$ from a model of M.

Closed manifolds

BUILDING BLOCK: \mathbb{R}^{n}

Presentation of $H^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right)$ [Arnold, Cohen]

- Generators: $\omega_{i j}$ of degree $n-1$ (for $1 \leq i \neq j \leq r$)
- Relations:

$$
\omega_{i j}^{2}=\omega_{j i}-(-1)^{n} \omega_{i j}=\omega_{i j} \omega_{j k}+\omega_{j k} \omega_{k i}+\omega_{k i} \omega_{i j}=0
$$

BUILDING BLOCK: \mathbb{R}^{n}

Presentation of $H^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right)$ [Arnold, Cohen]

- Generators: $\omega_{i j}$ of degree $n-1$ (for $1 \leq i \neq j \leq r$)
- Relations:

$$
\omega_{i j}^{2}=\omega_{j i}-(-1)^{n} \omega_{i j}=\omega_{i j} \omega_{j k}+\omega_{j k} \omega_{k i}+\omega_{k i} \omega_{i j}=0
$$

Theorem (Arnold 1969)

Formality: $\mathrm{H}^{*}\left(\operatorname{Conf}_{\mathbb{C}}(r)\right) \sim_{\mathbb{C}} \Omega^{*}\left(\operatorname{Conf}_{\mathbb{C}}(r)\right), \omega_{i j} \mapsto \mathrm{~d} \log \left(z_{i}-z_{j}\right)$.

BUILDING BLOCK: \mathbb{R}^{n}

Presentation of $H^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right)$ [Arnold, Cohen]

- Generators: $\omega_{i j}$ of degree $n-1$ (for $1 \leq i \neq j \leq r$)
- Relations:

$$
\omega_{i j}^{2}=\omega_{j i}-(-1)^{n} \omega_{i j}=\omega_{i j} \omega_{j k}+\omega_{j k} \omega_{k i}+\omega_{k i} \omega_{i j}=0
$$

Theorem (Arnold 1969)

Formality: $\mathrm{H}^{*}\left(\operatorname{Conf}_{\mathbb{C}}(r)\right) \sim_{\mathbb{C}} \Omega^{*}\left(\operatorname{Conf}_{\mathbb{C}}(r)\right), \omega_{i j} \mapsto \mathrm{~d} \log \left(z_{i}-z_{j}\right)$.
Theorem (Kontsevich 1999, Lambrechts-Volić 2014)
$H^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right) \sim_{\mathbb{R}} \Omega^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right)$ for all $r \geq 0$ and $n \geq 2$.

BUILDING BLOCK: \mathbb{R}^{n}

Presentation of $H^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right)$ [Arnold, Cohen]

- Generators: $\omega_{i j}$ of degree $n-1$ (for $1 \leq i \neq j \leq r$)
- Relations:

$$
\omega_{i j}^{2}=\omega_{j i}-(-1)^{n} \omega_{i j}=\omega_{i j} \omega_{j k}+\omega_{j k} \omega_{k i}+\omega_{k i} \omega_{i j}=0
$$

Theorem (Arnold 1969)

Formality: $\mathrm{H}^{*}\left(\operatorname{Conf}_{\mathbb{C}}(r)\right) \sim \mathbb{C} \Omega^{*}\left(\operatorname{Conf}_{\mathbb{C}}(r)\right), \omega_{i j} \mapsto \mathrm{~d} \log \left(z_{i}-z_{j}\right)$.
Theorem (Kontsevich 1999, Lambrechts-Volić 2014) $H^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right) \sim_{\mathbb{R}} \Omega^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right)$ for all $r \geq 0$ and $n \geq 2$.

Corollary

The cohomology of $\operatorname{Conf}_{\mathbb{R}^{n}}(r)$ determines its rational homotopy type.

$$
H^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right) \underset{\leftarrow}{\sim} ? ? \xrightarrow{\sim} \Omega^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right)
$$

Idea of Kontsevich's proof

$$
H^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right) \underset{\leftarrow}{\sim} ? ? \xrightarrow{\sim} \Omega^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right)
$$

$H^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right)$: graphs on r vertices mod local three-terms relations.

IdeA of Kontsevich's proof

$$
H^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right) \underset{\text { proj. }}{\sim} \operatorname{Graphs}_{n}(r) \underset{\int}{\sim} \Omega^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right)
$$

Replace relations by differentials:

IdeA of Kontsevich's proof

$$
H^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right) \underset{\text { proj. }}{\stackrel{\sim}{\sim}} \operatorname{Graphs}_{n}(r) \underset{\int}{\sim} \Omega^{*}\left(\operatorname{Conf}_{\mathbb{R}^{n}}(r)\right)
$$

Replace relations by differentials:

Key point: integrals of internal components vanish.

The Lambrechts-Stanley model

M : oriented closed manifold, $A \sim \Omega^{*}(M)$: Poincaré duality model of M

The Lambrechts-Stanley model

M : oriented closed manifold, $\quad A \sim \Omega^{*}(M)$: Poincaré duality model of M LS model $G_{A}(r)$: inspired by $\operatorname{Conf}_{r}(M)=M^{\times r} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}$

The Lambrechts-Stanley model

M : oriented closed manifold, $\quad A \sim \Omega^{*}(M)$: Poincaré duality model of M LS model $G_{A}(r)$: inspired by $\operatorname{Conf}_{r}(M)=M^{\times r} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}$

- "Generators": $A^{\otimes r}$ and the $\omega_{i j}$ from $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$,

THE LAMBRECHTS-STANLEY MODEL

M : oriented closed manifold, $A \sim \Omega^{*}(M)$: Poincaré duality model of M
LS model $G_{A}(r)$: inspired by $\operatorname{Conf}_{r}(M)=M^{\times r} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}$

- "Generators": $A^{\otimes r}$ and the $\omega_{i j}$ from $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$,
- Arnold relations + symmetry $p_{i}^{*}(a) \omega_{i j}=p_{j}^{*}(a) \omega_{i j}$,

THE LAMBRECHTS-STANLEY MODEL

M : oriented closed manifold, $A \sim \Omega^{*}(M)$: Poincaré duality model of M
LS model $G_{A}(r)$: inspired by $\operatorname{Conf}_{r}(M)=M^{\times r} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}$

- "Generators": $A^{\otimes r}$ and the $\omega_{i j}$ from $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$,
- Arnold relations + symmetry $p_{i}^{*}(a) \omega_{i j}=p_{j}^{*}(a) \omega_{i j}$,
- d $\omega_{i j}$ kills the dual of $\left[\Delta_{i j}\right]$.

THE LAMBRECHTS-STANLEY MODEL

M : oriented closed manifold, $\quad A \sim \Omega^{*}(M)$: Poincaré duality model of M
LS model $G_{A}(r)$: inspired by $\operatorname{Conf}_{r}(M)=M^{\times r} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}$

- "Generators": $A^{\otimes r}$ and the $\omega_{i j}$ from $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$,
- Arnold relations + symmetry $p_{i}^{*}(a) \omega_{i j}=p_{j}^{*}(a) \omega_{i j}$,
- d $\omega_{i j}$ kills the dual of $\left[\Delta_{i j}\right]$.

Examples:

- $G_{A}(0)=\mathbb{R}$ is a model of $\operatorname{Conf}_{0}(M)=\{\varnothing\} \quad \checkmark$

THE LAMBRECHTS-STANLEY MODEL

M : oriented closed manifold, $\quad A \sim \Omega^{*}(M)$: Poincaré duality model of M
LS model $G_{A}(r)$: inspired by $\operatorname{Conf}_{r}(M)=M^{\times r} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}$

- "Generators": $A^{\otimes r}$ and the $\omega_{i j}$ from $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$,
- Arnold relations + symmetry $p_{i}^{*}(a) \omega_{i j}=p_{j}^{*}(a) \omega_{i j}$,
- d $\omega_{i j}$ kills the dual of $\left[\Delta_{i j}\right]$.

Examples:

- $G_{A}(0)=\mathbb{R}$ is a model of $\operatorname{Conf}_{0}(M)=\{\varnothing\} \quad \checkmark$
- $G_{A}(1)=A$ is a model of $\operatorname{Conf}_{1}(M)=M$

THE LAMBRECHTS-STANLEY MODEL

M : oriented closed manifold, $\quad A \sim \Omega^{*}(M)$: Poincaré duality model of M
LS model $G_{A}(r)$: inspired by $\operatorname{Conf}_{r}(M)=M^{\times r} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}$

- "Generators": $A^{\otimes r}$ and the $\omega_{i j}$ from $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$,
- Arnold relations + symmetry $p_{i}^{*}(a) \omega_{i j}=p_{j}^{*}(a) \omega_{i j}$,
- d $\omega_{i j}$ kills the dual of $\left[\Delta_{i j}\right]$.

Examples:

- $G_{A}(0)=\mathbb{R}$ is a model of $\operatorname{Conf}_{0}(M)=\{\varnothing\}$
- $G_{A}(1)=A$ is a model of $\operatorname{Conf}_{1}(M)=M$
- $G_{A}(2)=\left(A^{\otimes 2} \oplus A \cdot \omega_{12}, d \omega_{12}=\Delta_{A}\right) \simeq A^{\otimes 2} /\left(\Delta_{A}\right)$ should be a model of $\operatorname{Conf}_{2}(M)=M^{2} \backslash \Delta$

THE LAMBRECHTS-STANLEY MODEL

M : oriented closed manifold, $\quad A \sim \Omega^{*}(M)$: Poincaré duality model of M
LS model $G_{A}(r)$: inspired by $\operatorname{Conf}_{r}(M)=M^{\times r} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}$

- "Generators": $A^{\otimes r}$ and the $\omega_{i j}$ from $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$,
- Arnold relations + symmetry $p_{i}^{*}(a) \omega_{i j}=p_{j}^{*}(a) \omega_{i j}$,
- d $\omega_{i j}$ kills the dual of $\left[\Delta_{i j}\right]$.

Examples:

- $G_{A}(0)=\mathbb{R}$ is a model of $\operatorname{Conf}_{0}(M)=\{\varnothing\}$
- $G_{A}(1)=A$ is a model of $\operatorname{Conf}_{1}(M)=M$
- $G_{A}(2)=\left(A^{\otimes 2} \oplus A \cdot \omega_{12}, d \omega_{12}=\Delta_{A}\right) \simeq A^{\otimes 2} /\left(\Delta_{A}\right)$ should be a model of $\operatorname{Conf}_{2}(M)=M^{2} \backslash \Delta$
- $r \geq 3$: more complicated.

Result

Theorem (I)
M: simply connected closed smooth manifold, A : any Poincaré duality model of M, then:

$$
\mathrm{G}_{A}(r) \simeq_{\mathbb{R}} \Omega^{*}\left(\operatorname{Conf}_{M}(r)\right), \quad \forall r \geq 0
$$

Result

Theorem (I)
M: simply connected closed smooth manifold, A : any Poincaré duality model of M, then:

$$
\mathrm{G}_{A}(r) \simeq_{\mathbb{R}} \Omega^{*}\left(\operatorname{Conf}_{M}(r)\right), \quad \forall r \geq 0
$$

Corollary (I, CW)
$M \simeq_{\mathbb{R}} N \Longrightarrow \operatorname{Conf}_{M}(r) \simeq_{\mathbb{R}} \operatorname{Conf}_{N}(r)$.

Proof

Inspired by the ideas of Kontsevich: graphs decorated by elements of A, replace relations by internal vertices, map into Ω^{*} by integrals

$$
\mathrm{G}_{A}(r) \underset{\leftarrow}{\sim} \operatorname{Graphs}_{R} \xrightarrow{\sim} \Omega^{*}\left(\operatorname{Conf}_{M}(r)\right)
$$

where $R=$ resolution of A.

Proof

Inspired by the ideas of Kontsevich: graphs decorated by elements of A, replace relations by internal vertices, map into Ω^{*} by integrals

$$
\mathrm{G}_{A}(r) \underset{\leftarrow}{\leftarrow} \operatorname{Graphs}_{R} \xrightarrow{\sim} \Omega^{*}\left(\operatorname{Conf}_{M}(r)\right)
$$

where $R=$ resolution of A.
Need integrals of internal components to vanish \Longrightarrow needs $\pi_{1} M=0$ and $\operatorname{dim} M \geq 4$ by degree counting (Rk: $\operatorname{dim} M \leq 3 \Longrightarrow M=S^{n} \rightarrow$ different methods)

Proof

Inspired by the ideas of Kontsevich: graphs decorated by elements of A, replace relations by internal vertices, map into Ω^{*} by integrals

$$
\mathrm{G}_{A}(\mathrm{r}) \underset{\sim}{\sim} \mathrm{Graphs}_{R} \xrightarrow{\sim} \Omega^{*}\left(\operatorname{Conf}_{M}(r)\right)
$$

where $R=$ resolution of A.
Need integrals of internal components to vanish \Longrightarrow needs $\pi_{1} M=0$
and $\operatorname{dim} M \geq 4$ by degree counting
(Rk: $\operatorname{dim} M \leq 3 \Longrightarrow M=S^{n} \rightarrow$ different methods)

Remark

Get another bigger model: Graphs (cf. CW).
Benefit: quasi-free, good for homological algebra.

FRAMED CONFIGURATIONS

$$
\operatorname{Conf}_{M}^{f r}(r)=\left\{\begin{array}{l}
\left(x, B_{1}, \ldots, B_{r}\right) \mid \\
x \in \operatorname{Conf}_{M}(r), \\
B_{i}: \text { basis of } T_{x_{i}} M
\end{array}\right\}
$$

FRAMED CONFIGURATIONS

$$
\operatorname{Conf}_{M}^{f_{f}^{r}}(r)=\left\{\begin{array}{l}
\left(x, B_{1}, \ldots, B_{r}\right) \mid \\
x \in \operatorname{Conf}_{M}(r), \\
B_{i}: \text { basis of } T_{x_{i}} M
\end{array}\right\}
$$

Useful for applications, but more complicated (already for $M=\mathbb{R}^{n!}$)

Framed configurations

$$
\operatorname{Conf}_{M}^{\mathrm{fr}}(r)=\left\{\begin{array}{l}
\left(x, B_{1}, \ldots, B_{r}\right) \mid \\
x \in \operatorname{Conf}_{M}(r), \\
B_{i}: \operatorname{basis} \text { of } T_{x_{i}} M
\end{array}\right\}
$$

Useful for applications, but more complicated (already for $M=\mathbb{R}^{n}!$)

Theorem (CDIW)

Graphical model for (oriented) $\operatorname{Conf}_{M}^{\mathrm{fr}}(r)$ based on graphs decorated by cohomology classes of $M+$ cohomology of $\mathrm{BSO}(n)$.

Framed configurations

$$
\operatorname{Conf}_{M}^{\mathrm{fr}}(r)=\left\{\begin{array}{l}
\left(x, B_{1}, \ldots, B_{r}\right) \mid \\
x \in \operatorname{Conf}_{M}(r), \\
B_{i}: \operatorname{basis} \text { of } T_{x_{i}} M
\end{array}\right\}
$$

Useful for applications, but more complicated (already for $M=\mathbb{R}^{n}!$)

Theorem (CDIW)

Graphical model for (oriented) $\operatorname{Conf}_{M}^{\mathrm{fr}}(r)$ based on graphs decorated by cohomology classes of $M+$ cohomology of $\mathrm{BSO}(n)$.

Problem: depends on non-explicit integrals; no homotopy invariance yet.

MANIFOLDS WITH BOUNDARY

MANIFOLD GLUING

Goal: compute configuration spaces "by induction"

$M=M^{\prime} \cup_{N \times \mathbb{R}} M^{\prime \prime}$

MANIFOLD GLUING

Goal: compute configuration spaces "by induction"

$$
M=M^{\prime} \cup_{N \times \mathbb{R}} M^{\prime \prime}
$$

$\operatorname{Conf}_{N \times \mathbb{R}}=\left\{\operatorname{Conf}_{N \times \mathbb{R}}(r)\right\}_{r \geq 0}$ is a monoid (up to homotopy):

MANIFOLD GLUING

Goal: compute configuration spaces "by induction"

$$
M=M^{\prime} \cup_{N \times \mathbb{R}} M^{\prime \prime}
$$

$\operatorname{Conf}_{N \times \mathbb{R}}=\left\{\operatorname{Conf}_{N \times \mathbb{R}}(r)\right\}_{r \geq 0}$ is a monoid (up to homotopy):

$\operatorname{Conf}_{M^{\prime}}$ is a left module, $\operatorname{Conf}_{M^{\prime \prime}}$ is a right module, and:

$$
\operatorname{Conf}_{M} \simeq \operatorname{Conf}_{M^{\prime}} \otimes_{\operatorname{Conf}_{N \times \mathbb{R}}}^{\mathbb{L}} \operatorname{Conf}_{M^{\prime \prime}}
$$

GRaphical models \& Small model

Theorem (CILW)

Graphical model aGraphs ${ }_{N}$ for the monoid $\operatorname{Conf}_{N \times \mathbb{R}}$, only depends on the real homotopy type of N.

GRAPHICAL MODELS \& SMALL MODEL

Theorem (CILW)

Graphical model aGraphs ${ }_{N}$ for the monoid $\operatorname{Conf}_{N \times \mathbb{R}}$, only depends on the real homotopy type of N.

Remark: crossing with nontrivial contractible space makes Conf $_{2}$ homotopy invariant [Raptis-Salvatore].

GRAPHICAL MODELS \& SMALL MODEL

Theorem (CILW)

Graphical model $\mathrm{aGraphs}_{N}$ for the monoid $\operatorname{Conf}_{N \times \mathbb{R}}$, only depends on the real homotopy type of N.

Remark: crossing with nontrivial contractible space makes Conf ${ }_{2}$ homotopy invariant [Raptis-Salvatore].
Theorem (CILW)
Graphical model $\mathrm{mGraphs}_{M^{\prime}}$ for the left module Conf_{M}. Only depends on the real homotopy type of M if $\operatorname{dim} M \geq 4$ and $\pi_{<1} M=0$. (Otherwise, depends on integrals.)

GRAPHICAL MODELS \& SMALL MODEL

Theorem (CILW)

Graphical model aGraphs $_{N}$ for the monoid $\operatorname{Conf}_{N \times \mathbb{R}}$, only depends on the real homotopy type of N.

Remark: crossing with nontrivial contractible space makes Conf ${ }_{2}$ homotopy invariant [Raptis-Salvatore].
Theorem (CILW)
Graphical model mGraphs $M_{M^{\prime}}$ for the left module Conf_{M}. Only depends on the real homotopy type of M if $\operatorname{dim} M \geq 4$ and $\pi_{<1} M=0$. (Otherwise, depends on integrals.)

Theorem (CILW)

Quotient of $\mathrm{mGraph}_{M^{\prime}}=$ small "Lambrechts-Stanley-like" model, depends on Poincaré-Lefschetz duality model of $(M, \partial M)$.

SuRFACES

SPLITTING

Only simply connected surfaces $=S^{2}$. What about others?

Splitting

Only simply connected surfaces $=S^{2}$. What about others? Oriented genus g surface:

$$
\Sigma_{g}=\left(S^{2} \backslash\{1, \ldots, 2 g\}\right) \cup\left(\bigsqcup_{i=1}^{g} S^{1} \times \mathbb{R}\right)
$$

Splitting

Only simply connected surfaces $=S^{2}$. What about others? Oriented genus g surface:

$$
\Sigma_{g}=\left(S^{2} \backslash\{1, \ldots, 2 g\}\right) \cup\left(\bigsqcup_{i=1}^{g} S^{1} \times \mathbb{R}\right)
$$

- need models for $\operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}$ and $\operatorname{Conf}_{S^{1} \times \mathbb{R}}$

Splitting

Only simply connected surfaces $=S^{2}$. What about others? Oriented genus g surface:

$$
\Sigma_{g}=\left(S^{2} \backslash\{1, \ldots, 2 g\}\right) \cup\left(\bigsqcup_{i=1}^{g} S^{1} \times \mathbb{R}\right)
$$

- need models for $\operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}$ and $\operatorname{Conf}_{S^{1} \times \mathbb{R}}$
- also need algebraic structure: $\operatorname{Conf}_{S^{1} \times \mathbb{R}}$ is a monoid, acts on $\operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}$ (g times on the left, g times on the right)

Splitting

Only simply connected surfaces $=S^{2}$. What about others? Oriented genus g surface:

$$
\Sigma_{g}=\left(S^{2} \backslash\{1, \ldots, 2 g\}\right) \cup\left(\bigsqcup_{i=1}^{g} S^{1} \times \mathbb{R}\right)
$$

- need models for $\operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}$ and $\operatorname{Conf}_{S^{1} \times \mathbb{R}}$
- also need algebraic structure: $\operatorname{Conf}_{S^{1} \times \mathbb{R}}$ is a monoid, acts on $\operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}$ (g times on the left, g times on the right)
- need orientation reversal on $\operatorname{Conf}_{S^{1} \times \mathbb{R}}$ to deal with left/right

Splitting

Only simply connected surfaces $=S^{2}$. What about others? Oriented genus g surface:

$$
\Sigma_{g}=\left(S^{2} \backslash\{1, \ldots, 2 g\}\right) \cup\left(\bigsqcup_{i=1}^{g} S^{1} \times \mathbb{R}\right)
$$

- need models for $\operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}$ and $\operatorname{Conf}_{S^{1} \times \mathbb{R}}$
- also need algebraic structure: $\operatorname{Conf}_{S^{1} \times \mathbb{R}}$ is a monoid, acts on $\operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}$ (g times on the left, g times on the right)
- need orientation reversal on $\operatorname{Conf}_{S^{1} \times \mathbb{R}}$ to deal with left/right
- we do everything framed

POINTS REMOVED

$S^{2} \backslash\{1, \ldots, 2 g\}$ and $S^{1} \times \mathbb{R}$ are both instances of $\mathbb{R}^{2} \backslash\{$ points $\}$

POINTS REMOVED

$S^{2} \backslash\{1, \ldots, 2 g\}$ and $S^{1} \times \mathbb{R}$ are both instances of $\mathbb{R}^{2} \backslash\{$ points $\}$ \Longrightarrow can use the fibration $\operatorname{Conf} f_{M \mid *}^{\mathrm{fr}}(r) \hookrightarrow \operatorname{Conf}_{M}^{\mathrm{fr}}(r+1) \rightarrow \operatorname{Fr}_{M}$ to get the homotopy type inductively from $\operatorname{Conf}_{\mathbb{R}^{2}}^{f r}(r) \simeq \operatorname{Conf}_{\mathbb{R}^{2}}(r) \times \operatorname{SO}(2)^{r}$

POINTS REMOVED

$S^{2} \backslash\{1, \ldots, 2 g\}$ and $S^{1} \times \mathbb{R}$ are both instances of $\mathbb{R}^{2} \backslash\{$ points $\}$
\Longrightarrow can use the fibration $\operatorname{Conf}_{M \backslash *}^{\mathrm{fr}}(r) \hookrightarrow \operatorname{Conf}_{M}^{\mathrm{fr}}(r+1) \rightarrow \mathrm{Fr}_{M}$ to get the homotopy type inductively from $\operatorname{Conf}_{\mathbb{R}^{2}} \mathrm{fr}^{(r)} \simeq \operatorname{Conf}_{\mathbb{R}^{2}}(r) \times \mathrm{SO}(2)^{r}$

+ cyclic formality of the little disks operad:

Theorem (CIW)

Conf ${ }_{S^{2} \backslash\{1, \ldots, 2 g\}}^{\mathrm{fr}}$ and Conf ${ }_{S^{1} \times \mathbb{R}^{\mathrm{R}}}$ together with all their algebraic (monoid, orientation reversal, left/right actions) structures are formal.

Result

Description of $\Sigma_{g} \Longrightarrow$ Conf $_{\Sigma_{g}}^{\mathrm{fr}}$ is an "iterated Hochschild complex"

$$
\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}} \simeq \hat{\bigotimes}_{\operatorname{Conf}_{S^{1} \times \mathbb{R}}}^{(1,1), \ldots,(g, g)} \operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}^{\mathrm{fr}}
$$

Result

Description of $\Sigma_{g} \Longrightarrow$ Conf $_{\Sigma_{g}}^{\mathrm{fr}}$ is an "iterated Hochschild complex"

$$
\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}} \simeq \hat{\bigotimes}_{\operatorname{Conf}_{S^{1} \times \mathbb{R}}}^{(1,1), \ldots,(g, g)} \operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}^{\mathrm{fr}}
$$

Theorem (CIW)

Rational model $\mathrm{G}_{\Sigma_{g}}^{\mathrm{fr}}(r)$ for $\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}}(r)$ given by:

$$
(H^{*}\left(\Sigma_{g}\right)^{\otimes r} \otimes \underbrace{S\left(\theta_{i}\right)}_{H^{*}\left(\operatorname{BSO}(2)^{r}\right)} \otimes S\left(\omega_{i j}\right) /(\ldots) ; d \omega_{i j}=\Delta_{i j}, d \theta_{i}=(2-2 g) \operatorname{vol}_{i}) .
$$

Result

Description of $\Sigma_{g} \Longrightarrow$ Conf $_{\Sigma_{g}}^{\mathrm{fr}}$ is an "iterated Hochschild complex"

$$
\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}} \simeq \hat{\bigotimes}_{\operatorname{Conf}_{S^{1} \times \mathbb{R}}}^{(1,1), \ldots,(g, g)} \operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}^{\mathrm{fr}}
$$

Theorem (CIW)

Rational model $\mathrm{G}_{\Sigma_{g}}^{\mathrm{fr}}(r)$ for Conf $\mathrm{\Sigma}_{g}(r)$ given by:

$$
(H^{*}\left(\Sigma_{g}\right)^{\otimes r} \otimes \underbrace{S\left(\theta_{i}\right)}_{H^{*}\left(\operatorname{BSO}(2)^{r}\right)} \otimes S\left(\omega_{i j}\right) /(\ldots) ; d \omega_{i j}=\Delta_{i j}, d \theta_{i}=(2-2 g) \mathrm{vol}_{i}) .
$$

Proof: cohomology of the \otimes above, ...

$$
\mathrm{G}_{\Sigma_{g}}^{\mathrm{fr}}(r) \underset{\sim}{\sim} \mathrm{BVGraphs}_{\Sigma_{g}} \xrightarrow{\sim} \hat{\otimes}_{\mathrm{BV}_{1}^{V}}^{(1,1) \ldots(g, g)} \mathrm{BV}_{g, g}^{\vee} \simeq \Omega^{*}\left(\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}}(r)\right) .
$$

Result

Description of $\Sigma_{g} \Longrightarrow$ Conf $_{\Sigma_{g}}^{\mathrm{fr}}$ is an "iterated Hochschild complex"

$$
\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}} \simeq \hat{\bigotimes}_{\operatorname{Conf}_{S^{1} \times \mathbb{R}}}^{(1,1), \ldots,(g, g)} \operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}^{\mathrm{fr}}
$$

Theorem (CIW)

Rational model $\mathrm{G}_{\Sigma_{g}}^{\mathrm{fr}}(r)$ for Conf $\mathrm{\Sigma}_{g}(r)$ given by:

$$
(H^{*}\left(\Sigma_{g}\right)^{\otimes r} \otimes \underbrace{S\left(\theta_{i}\right)}_{H^{*}\left(\operatorname{BSO}(2)^{r}\right)} \otimes S\left(\omega_{i j}\right) /(\ldots) ; d \omega_{i j}=\Delta_{i j}, d \theta_{i}=(2-2 g) \mathrm{vol}_{i}) .
$$

Proof: ... general rational homotopy theory, ...

$$
\mathrm{G}_{\Sigma_{g}}^{\mathrm{fr}}(r) \underset{\sim}{\mathrm{BVGraphs}_{\Sigma_{g}}} \xrightarrow{\sim} \hat{\otimes}_{\mathrm{BV}_{1}^{\vee}}^{(1,1) \ldots(g, g)} \mathrm{BV}_{g, g}^{\vee} \simeq \Omega^{*}\left(\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}}(r)\right) .
$$

Result

Description of $\Sigma_{g} \Longrightarrow$ Conf $_{\Sigma_{g}}^{\mathrm{fr}}$ is an "iterated Hochschild complex"

$$
\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}} \simeq \hat{\bigotimes}_{\operatorname{Conf}_{S^{1} \times \mathbb{R}}}^{(1,1), \ldots,(g, g)} \operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}^{\mathrm{fr}}
$$

Theorem (CIW)

Rational model $\mathrm{G}_{\Sigma_{g}}^{\mathrm{fr}}(r)$ for $\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}}(r)$ given by:

$$
(H^{*}\left(\Sigma_{g}\right)^{\otimes r} \otimes \underbrace{S\left(\theta_{i}\right)}_{H^{*}\left(\operatorname{BSO}(2)^{r}\right)} \otimes S\left(\omega_{i j}\right) /(\ldots) ; d \omega_{i j}=\Delta_{i j}, d \theta_{i}=(2-2 g) \mathrm{vol}_{i}) .
$$

Proof: ... graphs decorated by $H^{*}\left(\Sigma_{g}\right)$ and $H^{*}(\mathrm{BSO}(2)), \ldots$

$$
\mathrm{G}_{\Sigma_{g}}^{\mathrm{fr}}(r) \underset{\leftarrow}{\sim} \mathrm{BVGraphs}_{\Sigma_{g}} \xrightarrow{\sim} \hat{\otimes}_{\mathrm{BV}_{1}^{\vee}}^{(1,1) \ldots(g, g)} \mathrm{BV}_{g, g}^{\vee} \simeq \Omega^{*}\left(\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}}(r)\right)
$$

Result

Description of $\Sigma_{g} \Longrightarrow$ Conf $_{\Sigma_{g}}^{\mathrm{fr}}$ is an "iterated Hochschild complex"

$$
\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}} \simeq \hat{\bigotimes}_{\operatorname{Conf}_{S^{1} \times \mathbb{R}}}^{(1,1), \ldots,(g, g)} \operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}^{\mathrm{fr}}
$$

Theorem (CIW)

Rational model $\mathrm{G}_{\Sigma_{g}}^{\mathrm{fr}}(r)$ for $\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}}(r)$ given by:

$$
(H^{*}\left(\Sigma_{g}\right)^{\otimes r} \otimes \underbrace{S\left(\theta_{i}\right)}_{H^{*}\left(\operatorname{BSO}(2)^{r}\right)} \otimes S\left(\omega_{i j}\right) /(\ldots) ; d \omega_{i j}=\Delta_{i j}, d \theta_{i}=(2-2 g) \mathrm{vol}_{i}) .
$$

Proof: ... formal version of Kontsevich's integrals, ...

$$
\mathrm{G}_{\Sigma_{g}}^{\mathrm{fr}}(r) \underset{\sim}{\sim} \mathrm{BVGraphs}_{\Sigma_{g}} \xrightarrow{\sim} \hat{\otimes}_{\mathrm{BV}_{1}^{\vee}}^{(1,1) \ldots(g, g)} \mathrm{BV}_{g, g}^{\vee} \simeq \Omega^{*}\left(\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}}(r)\right) .
$$

Result

Description of $\Sigma_{g} \Longrightarrow$ Conf $_{\Sigma_{g}}^{\mathrm{fr}}$ is an "iterated Hochschild complex"

$$
\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}} \simeq \hat{\bigotimes}_{\operatorname{Conf}_{S^{1} \times \mathbb{R}}}^{(1,1), \ldots,(g, g)} \operatorname{Conf}_{S^{2} \backslash\{1, \ldots, 2 g\}}^{\mathrm{fr}}
$$

Theorem (CIW)

Rational model $\mathrm{G}_{\Sigma_{g}}^{\mathrm{fr}}(r)$ for Conf $\mathrm{\Sigma}_{g}(r)$ given by:

$$
(H^{*}\left(\Sigma_{g}\right)^{\otimes r} \otimes \underbrace{S\left(\theta_{i}\right)}_{H^{*}\left(\operatorname{BSO}(2)^{r}\right)} \otimes S\left(\omega_{i j}\right) /(\ldots) ; d \omega_{i j}=\Delta_{i j}, d \theta_{i}=(2-2 g) \mathrm{vol}_{i}) .
$$

Proof: ... and combinatorics.

$$
\mathrm{G}_{\Sigma_{g}}^{\mathrm{fr}}(r) \sim \text { BVGraphs }_{\Sigma_{g}} \xrightarrow{\sim} \hat{\otimes}_{\mathrm{BV}_{1}^{\vee}}^{(1,1) \ldots(g, g)} \mathrm{BV}_{g, g}^{\vee} \simeq \Omega^{*}\left(\operatorname{Conf}_{\Sigma_{g}}^{\mathrm{fr}}(r)\right) .
$$

Where are operads?

Need to compactify configuration spaces for integrals to converge: add virtual configurations with infinitesimally close points

Where are operads?

Get a new algebraic structure: an operad

Where are operads?

Right module structure on compactification of Conf_{M}

if M is parallelized; otherwise, need framed configurations.

Why operads?

In previous results:

- Kontsevich's formality is compatible with the operad structure;

WHY OPERADS?

In previous results:

- Kontsevich's formality is compatible with the operad structure;
- LS model has a right module structure compatible with Kontsevich's formality if M is framed;

WHY OPERADS?

In previous results:

- Kontsevich's formality is compatible with the operad structure;
- LS model has a right module structure compatible with Kontsevich's formality if M is framed;
- graphical model for Conf $\mathrm{fr}_{M}^{\mathrm{fr}}$ is compatible with the Khoroshkin-Willwacher model for the operad Conf $\mathbb{R}_{\mathbb{R}^{n}}^{\mathrm{fr}}$;

WHY OPERADS?

In previous results:

- Kontsevich's formality is compatible with the operad structure;
- LS model has a right module structure compatible with Kontsevich's formality if M is framed;
- graphical model for Conf ${ }_{M}^{\text {fr }}$ is compatible with the Khoroshkin-Willwacher model for the operad Conf $\mathbb{R}^{\text {fr }}$;
- small model for Conffrig involves Tamarkin's formality of $\operatorname{Conf}_{\mathbb{R}^{2}}$ and Ševera's proof of formality of $\operatorname{Conf}_{\mathbb{R}^{2}}^{\mathrm{fr}}$.

WHY OPERADS?

In previous results:

- Kontsevich's formality is compatible with the operad structure;
- LS model has a right module structure compatible with Kontsevich's formality if M is framed;
- graphical model for Conf ${ }_{M}^{\text {fr }}$ is compatible with the Khoroshkin-Willwacher model for the operad Conf $\mathbb{R}^{\text {fr }}$;
- small model for Conffrig involves Tamarkin's formality of $\operatorname{Conf}_{\mathbb{R}^{2}}$ and Ševera's proof of formality of $\operatorname{Conf}_{\mathbb{R}^{2}}^{\mathrm{fr}}$.

Some applications:

- Goodwillie-Weiss manifold calculus;
- factorization homology.

References

(R. Idrissi. "The Lambrechts-Stanley Model of Configuration Spaces." In: Invent. Math 216.1 (2019), pp. 1-68. ISSN: 1432-1297. DOI: 10.1007/s00222-018-0842-9. arXiv: 1608.08054.
R. Campos, N. Idrissi, P. Lambrechts, and T. Willwacher. Configuration Spaces of Manifolds with Boundary. 2018. arXiv: 1802.00716. Submitted.
R. Campos, J. Ducoulombier, N. Idrissi, and T. Willwacher. A model for framed configuration spaces of points. 2018. arXiv: 1807.08319. Submitted.
R. Campos, N. Idrissi, and T. Willwacher. Configuration Spaces of Surfaces. 2019. arXiv: 1911.12281. Submitted.

THANK YOU FOR YOUR ATTENTION!

