Formalité opéradique et homotopie des espaces de configuration

Operadic Formality and Homotopy of Configuration Spaces

Najib Idrissi Kaïtouni

Soutenance de thèse – 17 novembre 2017

Introduction

Overall Goal

Study configuration spaces of manifolds:

$$\operatorname{Conf}_k(M) \coloneqq \{(x_1, \ldots, x_k) \in M^k \mid \forall i \neq j, \ x_i \neq x_j\}$$

Idea

Use "formality of the little disks operads" = results for $\operatorname{Conf}_{k}(\mathbb{R}^{n})$.

Little Disks Operads

Swiss-Cheese Operad and Drinfeld Center

The Lambrechts–Stanley Model of Configuration Spaces

Configuration Spaces of Manifolds with Boundary

Little Disks Operads

Boardmann–Vogt, May (70's): little disks operads $D_n = {D_n(r)}_{r\geq 0}$

New structure: insertion

One can insert a configuration into a disk:

 \implies operad structure, cannot be seen on $\operatorname{Conf}_{\bullet}(\mathbb{R}^n)$

Configuration spaces of manifolds

If *M* is "framed":

$$\mathsf{D}_{\mathsf{M}}(k) \coloneqq \operatorname{Emb}^{\mathrm{fr}}(\mathbb{D}^n \sqcup \cdots \sqcup \mathbb{D}^n, \mathsf{M}) \xrightarrow{\sim} \operatorname{Conf}_k(\mathsf{M})$$

 \implies D_M = {D_M(k)}_{k\geq0} is a "right module" over $\widetilde{D_n}$

Idea

Use this extra structure to study $\operatorname{Conf}_k(M)$.

An algebra over D_n is a space on which D_n "acts":

 $\mathbf{D}_n(k) \times X^k \to X$

Theorem (Boardmann-Vogt, May 1972)

- If $X = \Omega^n Y$, then \mathbf{D}_n acts on X;
- if D_n acts on X (+ grouplike), then $X \simeq \Omega^n Y$ for some Y.

Algebraic world

Operad $D_n \mapsto homology H_*(D_n)$ (\triangle lose info) -

Theorem (Cohen 1976)

An algebra over $H_*(\mathbf{D}_n)$ is:

- an associative algebra (A, \cdot) for n = 1;
- an *n*-Gerstenhaber algebra $(B, \land, [,])$ for $n \ge 2$.

Commutativity for $n \ge 2$:

Associativity for $n \ge 1$:

Swiss-Cheese Operad and Drinfeld Center

Operad $D_n \mapsto$ fundamental groupoid πD_n

Proposition

For $n \in \{1, 2\}$, no loss of information: $\mathbf{D}_n \xrightarrow{\sim} B(\pi \mathbf{D}_n)$.

Theorem (Tamarkin, Fresse)

 $\pi D_n \simeq$ operad whose algebras are:

- monoidal categories (M, \otimes) for n = 1;
- braided monoidal categories (N, \otimes, τ) for n = 2.

Swiss-Cheese operad SC: " D_2 -algebras acting on D_1 -algebras"

Homology vs fundamental groupoid of SC

Theorem (Voronov 1999, Hoefel 2009)

An algebra over $H_*(SC)$ is a triplet (A, B, f) where:

- (A, \cdot) is an associative algebra;
- $(B, \land, [,])$ is a Gerstenhaber algebra;
- $f: B \rightarrow Z(A)$ is a central morphism of algebras.

Theorem

 $\pi \text{SC} \simeq$ an operad whose algebras are triplets (M, N, F) where:

- (M,\otimes) is a monoidal category;
- + (N,\otimes, au) is a braided monoidal category;
- + $F: N \rightarrow \mathcal{Z}(M)$ is a braided functor to the "Drinfeld center"

Remark

I also build a model $PaP\widehat{CD}^{\phi}_{+} = "PaP \rtimes_{\phi} \widehat{CD}_{+}"$ out of a Drinfeld associator ϕ , following Tamarkin's proof of the formality of D₂.

The Lambrechts-Stanley Model of Configuration Spaces

We are interested in rational/real models

 $\mathsf{A}\simeq \Omega^*(\mathsf{M})$ "forms on M " (e.g. de Rham, piecewise polynomial…)

where A is an "explicit" CDGA (= Commutative Differential Graded Algebra)

M nilpotent of finite type \implies A contains all the rational/real homotopy type of M

We're looking for a CDGA $\simeq \Omega^*(\operatorname{Conf}_k(M))$ built from A

 $\operatorname{Conf}_{k}(\mathbb{R}^{n})$ is a formal space, i.e. [Kontsevich]:

```
H^*(\operatorname{Conf}_k(\mathbb{R}^n)) \simeq \Omega^*(\operatorname{Conf}_k(\mathbb{R}^n))
```

completely determines the rational homotopy type of $\operatorname{Conf}_k(\mathbb{R}^n)$

Theorem (Arnold 1969, Cohen 1976)

•
$$H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = S(\omega_{ij})_{1 \le i \ne j \le k}/H$$

• $\deg \omega_{ij} = n - 1$

•
$$I = (\omega_{ji} = \pm \omega_{ij}, \ \omega_{jj}^2 = 0, \ \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} = 0)$$

Poincaré duality models

Poincaré duality CDGA (A, ε)

(example: M is closed & oriented)

- A: finite type connected CDGA; $(e.g. (H^*(M), d = 0))$
- $\varepsilon: A^n \to \mathbb{k}$ such that $\varepsilon \circ d = 0$: (e.g. $\int_{M} (-)$)
- $A^k \otimes A^{n-k} \to \mathbb{k}, a \otimes b \mapsto \varepsilon(ab)$ non degenerate. (e.g. $H^k(M) \otimes H^{n-k}(M) \to \mathbb{k}$)

Theorem (Lambrechts-Stanley 2004) Any simply connected manifold has such a model

Remark

By a result of Longoni–Salvatore (2005). ∃ non simply-connected $L \simeq L'$ but $\operatorname{Conf}_k(L) \not\simeq \operatorname{Conf}_k(L')$

 $G_A(k)$ conjectured model of $\operatorname{Conf}_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\longrightarrow := \{x_i = x_j\}$

- "Generators": $A^{\otimes k} \otimes S(\omega_{ij})_{1 \le i \ne j \le k}$
- Relations:
 - Arnold relations
 - $p_i^*(a) \cdot \omega_{ij} = p_j^*(a) \cdot \omega_{ij}$.

- $\begin{aligned} (\omega_{ji} &= \pm \omega_{ij}, \omega_{ij}^2 = \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} = 0) \\ (p_i^*(a) &= 1 \otimes \cdots \otimes 1 \otimes a \otimes 1 \otimes \cdots \otimes 1) \end{aligned}$
- $d\omega_{ij} = (p_i^* \cdot p_j^*)(\Delta_A)$ kills the dual of $[\Delta_{ij}]$.

Theorem (Lambrechts-Stanley 2008)

 $\dim_{\mathbb{Q}} H^{i}(\operatorname{Conf}_{k}(M)) = \dim_{\mathbb{Q}} H^{i}(G_{A}(k))$

 $G_A(k)$ was known to be a rational model of $\operatorname{Conf}_k(M)$ in a few cases:

- M smooth projective complex variety [Kriz];
- k = 2 and M is 2-connected [Lambrechts-Stanley];
- k = 2 and dim M is even [Cordova Bulens]...

Theorem

Let *M* be a smooth, closed, simply connected manifold of dimension ≥ 4 . Then $G_A(k)$ is a model over \mathbb{R} of $\operatorname{Conf}_k(M)$ for all $k \geq 0$.

Corollary

The real homotopy type of $\operatorname{Conf}_{k}(M)$ only depends on the real homotopy type of M:

$$M \simeq_{\mathbb{R}} N \implies \operatorname{Conf}_{k}(M) \simeq_{\mathbb{R}} \operatorname{Conf}_{k}(N).$$

Operads

Ideas & Goals

Adapt the construction for \mathbf{D}_n & keep track of the \mathbf{D}_n -action whenever it exists

Fulton–MacPherson compactification $\operatorname{Conf}_k(M) \xrightarrow{\sim} \mathsf{FM}_M(k)$

Understanding FM_M (#1)

Understanding FM_M (#2)

Understanding FM_M (#3)

Compactifying $\operatorname{Conf}_k(\mathbb{R}^n)$

Can also compactify $\operatorname{Conf}_k(\mathbb{R}^n) \xrightarrow{\sim} \operatorname{Conf}_k(\mathbb{R}^n) / (\mathbb{R}^n \rtimes \mathbb{R}^*_+) \xrightarrow{\sim} \mathsf{FM}_n(k)$

(+ normalization to deal with \mathbb{R}^n being noncompact)

$FM_n = \{FM_n(k)\}_{k\geq 0}$ is an operad $\simeq D_n$

 $\mathsf{FM}_n(k) \times \mathsf{FM}_n(l) \xrightarrow{\circ_i} \mathsf{FM}_n(k+l-1), \quad 1 \le i \le k$

 $M \text{ framed} \implies FM_M = \{FM_M(k)\}_{k \ge 0} \text{ is a right } FM_n \text{-module} \simeq D_M$

 $\mathsf{FM}_{\mathcal{M}}(k) \times \mathsf{FM}_{\mathcal{n}}(l) \xrightarrow{\circ_i} \mathsf{FM}_{\mathcal{M}}(k+l-1), \quad 1 \le i \le k$

H^{*}(**FM**_n) inherits a Hopf cooperad structure One can rewrite:

$$\mathbf{G}_{A}(k) = (A^{\otimes k} \otimes H^{*}(\mathbf{FM}_{n}(k)))/\text{relations}, d)$$

Proposition

 $\chi(M) = 0 \implies \mathbf{G}_A = {\mathbf{G}_A(k)}_{k>0}$ is a Hopf right $H^*(\mathbf{FM}_n)$ -comodule

А

We are looking for something to put here:

$$\mathbf{G}_{A}(k) \xleftarrow{\sim} ? \xrightarrow{\sim} \Omega^{*}(\mathbf{FM}_{M}(k))$$

If true, then hopefully it fits in a diagram like this:

Kontsevich's graph complexes

[Kontsevich] Hopf cooperad $Graphs_n = {Graphs_n(k)}_{k \ge 0}$

Theorem (Kontsevich 1999, Lambrechts-Volić 2014)

$$H^{*}(\mathsf{FM}_{n};\mathbb{R}) \xleftarrow{\sim} \mathsf{Graphs}_{n} \xrightarrow{\sim} \Omega^{*}_{\mathrm{PA}}(\mathsf{FM}_{n})$$
$$\omega_{ij} \xleftarrow{(i)} \xrightarrow{(j)} \longmapsto \text{ explicit representatives}$$
$$0 \xleftarrow{\sim} \bullet \xleftarrow{} \text{explicit" integrals}$$

Idea

Build **Graphs**^{z_{ε}} from **Graphs**ⁿ similar to how **G**_A is built from $H^*(FM_n)$

Theorem (Complete version)

M: closed, simply connected, smooth manifold with $\dim \geq 4$

$$\begin{array}{cccc} \mathsf{G}_{A} & \longleftarrow & \mathsf{Graphs}_{R}^{\mathbf{z}_{\varepsilon}} & \dashrightarrow & \Omega_{\mathrm{PA}}^{*}(\mathsf{FM}_{M}) \\ & & \circlearrowleft^{\dagger} & & \circlearrowright^{\dagger} & & \circlearrowright^{\ddagger} \\ & & H^{*}(\mathsf{FM}_{n}) & \longleftarrow & \mathsf{Graphs}_{n} & \longrightarrow & \Omega_{\mathrm{PA}}^{*}(\mathsf{FM}_{n}) \end{array}$$

$$\stackrel{\dagger}{} \text{ When } \chi(M) = 0$$

$$\stackrel{\dagger}{} \text{ When } M \text{ is framed} & A & \xleftarrow{\sim} R \xrightarrow{\sim} & \Omega_{\mathrm{PA}}^{*}(M) \end{array}$$

Configuration Spaces of Manifolds with Boundary

Now: $\partial M \neq \varnothing \implies H^*(M) \cong H_{n-*}(M, \partial M)$ for M oriented Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial})$:

- $(B_\partial, \varepsilon_\partial)$ Poincaré duality CDGA of dimension n-1; (models $\partial M, \int_{\partial M}$)
- B: fin. type connected CDGA; (models M)
- $\lambda : B \rightarrow B_{\partial}$: surjective CDGA morphism;

$$\cdot \ \varepsilon : B^n o \mathbb{R} \text{ s.t. } \varepsilon(dy) = \varepsilon_\partial(\lambda(y));$$
 (models $\int_{\mathbb{M}^{(-)}} \&$ Stokes formula

• if $K = \ker \lambda$, then $\theta : B \to K^{\vee}[-n]$, $b \mapsto \varepsilon(b \cdot -)$ is a surjective quasi-isomorphism. ($\kappa \simeq \Omega^*(M, \partial M)$)

In this case, $A := B/\ker\theta$ is a model of *M*, and $\theta : A \xrightarrow{\cong} K^{\vee}[-n]$

(models $\partial M \hookrightarrow M$)

Example

If $M = N \setminus \{*\}$ with N closed: take P a Poincaré duality model of N

 $B = (P \oplus \mathbb{R}v_{n-1}, dv = \operatorname{vol}_P) \twoheadrightarrow B_{\partial} = H^*(S^{n-1}) = (\mathbb{R} \oplus \mathbb{R}v_{n-1}, d = 0)$

Proposition

If M is simply connected, ∂M is simply connected, and dim $M \ge 7$, then $(M, \partial M)$ admits a PLD model.

Remark

Also true if *M* admits a "surjective pretty model", cf. theorems of Cordova Bulens and Cordova Bulens–Lambrechts–Stanley.

The "naïve" dg-module G_A

Given a PLD model (B, B_{∂}) and $A = B/\ker \theta$, can build $G_A(k)$ as before.

Theorem

$$\dim H^{i}(\operatorname{Conf}_{k}(M)) = \dim H^{i}(\mathbf{G}_{A}(k))$$

Idea of proof

Combine:

- Techniques of Lambrechts–Stanley to compute homology of spaces of the type $M^k \setminus \bigcup_{i \neq j} \Delta_{ij}$;
- Techniques of Cordova Bulens–L–S to compute homology of $M = N \setminus X$ where N is a closed manifold and $X \subset N$ is a sub-polyhedron.

In general, $G_A(k)$ is not actually a CDGA model for $Conf_k(M)$.

Motivation

$$M = S^1 \times (0,1) \cong \mathbb{R}^2 \setminus \{0\} \implies \operatorname{Conf}_2(M) \simeq \operatorname{Conf}_3(\mathbb{R}^2)$$

Then $A = H^*(M) = \mathbb{R} \oplus \mathbb{R}\eta$. In $G_A(2)$, relation $(1 \otimes \eta)\omega_{12} = (\eta \otimes 1)\omega_{12}$. But in $\text{Conf}_3(\mathbb{R}^2)$, Arnold relation: $(1 \otimes \eta)\omega_{12} = (\eta \otimes 1)\omega_{12} \pm (\eta \otimes \eta)$.

 \implies must define a "perturbed model" $\tilde{G}_A(k)$

Proposition

Isomorphism of dg-modules $G_A(k) \cong \tilde{G}_A(k)$.

Swiss-Cheese & graphs

M looks like \mathbb{H}^n (locally) \implies Swiss-Cheese operad

Theorem (Willwacher 2015)

Model SGraphs_n for SFM_n = $\overline{\text{Conf}_{\bullet,\bullet}(\mathbb{H}^n)} \simeq SC_n$:

Theorem for manifolds with boundary

Using similar techniques:

Theorem

For M a smooth, compact manifold of dimension at least \geq 7, M and ∂ M simply connected:

$$\widetilde{\mathsf{G}}_{\mathsf{A}} \xleftarrow{\sim} \mathsf{Graphs}_{\mathsf{R}}^{\mathbf{z}_{\varepsilon}} \xrightarrow{\sim} \Omega^{*}_{\mathrm{PA}}(\mathsf{SFM}_{\mathsf{M}}(\varnothing, -))$$

$$\overset{\circlearrowright}{\longrightarrow} \overset{\circlearrowright}{\longrightarrow} \mathfrak{Graphs}_{n} \xrightarrow{\sim} \Omega^{*}_{\mathrm{PA}}(\mathsf{FM}_{n})$$

Moreover: model SGraphs $_{R,R_{\partial}}^{c_{M},z_{\varphi}^{S}}(k,l)$ of SFM_M(k,l), compatible with the (co)action of SGraphs_n / SFM_n

Fin de la présentation