Formalité opéradique et homotopie des espaces de configuration

Operadic Formality and Homotopy of Configuration Spaces

Najib Idrissi Kaïtouni
Soutenance de thèse - 17 novembre 2017

Laboratoire
Paul Painlevé

Introduction

Overall Goal

Study configuration spaces of manifolds:

$$
\operatorname{Conf}_{k}(M):=\left\{\left(x_{1}, \ldots, x_{k}\right) \in M^{k} \mid \forall i \neq j, x_{i} \neq x_{j}\right\}
$$

Idea

Use "formality of the little disks operads" = results for $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$.

Plan

Little Disks Operads

Swiss-Cheese Operad and Drinfeld Center

The Lambrechts-Stanley Model of Configuration Spaces

Configuration Spaces of Manifolds with Boundary

Little Disks Operads

Little Disks Operads

Boardmann-Vogt, May (70's): little disks operads $D_{n}=\left\{D_{n}(r)\right\}_{r \geq 0}$

New structure: insertion

One can insert a configuration into a disk:

\Longrightarrow operad structure, cannot be seen on Conf. $\left(\mathbb{R}^{n}\right)$

Configuration spaces of manifolds

If M is "framed":

$$
\mathrm{D}_{M}(k):=\operatorname{Emb}^{\mathrm{fr}}\left(\mathbb{D}^{n} \sqcup \cdots \sqcup \mathbb{D}^{n}, M\right) \xrightarrow{\sim} \operatorname{Conf}_{k}(M)
$$

$\Longrightarrow D_{M}=\left\{D_{M}(k)\right\}_{k \geq 0}$ is a "right module" over D_{n}
Idea
Use this extra structure to study $\operatorname{Conf}_{k}(M)$.

Algebras over D_{n} in the topological world

An algebra over D_{n} is a space on which D_{n} "acts":

$$
\mathrm{D}_{n}(k) \times X^{k} \rightarrow X
$$

Theorem (Boardmann-Vogt, May 1972)

- If $X=\Omega^{n} Y$, then D_{n} acts on X;
- if D_{n} acts on X (+ grouplike), then $X \simeq \Omega^{n} Y$ for some Y.

Algebraic world

Operad $D_{n} \mapsto$ homology $H_{*}\left(D_{n}\right) \quad$ (\triangle lose info) -
Theorem (Cohen 1976)
An algebra over $H_{*}\left(D_{n}\right)$ is:

- an associative algebra (A, \cdot) for $n=1$;
- an n-Gerstenhaber algebra $(B, \wedge,[]$,$) for n \geq 2$.

Commutativity for $n \geq 2$:
Associativity for $n \geq 1$:

Swiss-Cheese Operad and Drinfeld Center

Categorical world

Operad $\mathrm{D}_{n} \mapsto$ fundamental groupoid $\pi \mathrm{D}_{n}$

Proposition

For $n \in\{1,2\}$, no loss of information: $D_{n} \xrightarrow{\sim} B\left(\pi D_{n}\right)$.

Theorem (Tamarkin, Fresse) $\pi \mathrm{D}_{n} \simeq$ operad whose algebras are:

- monoidal categories (M, \otimes) for $n=1$;
- braided monoidal categories $(\mathrm{N}, \otimes, \tau)$ for $n=2$.

Swiss-Cheese operad

Swiss-Cheese operad SC: " D_{2}-algebras acting on D_{1}-algebras"

$\mathrm{SC}^{\mathrm{o}}(2,1)$

$\mathrm{SC}^{\mathrm{c}}(0,2)=\mathrm{D}_{2}(2)$

$\mathrm{SC}^{0}(2,2)$

Homology vs fundamental groupoid of SC

Theorem (Voronov 1999, Hoefel 2009)
An algebra over $H_{*}(S C)$ is a triplet (A, B, f) where:

- (A, \cdot) is an associative algebra;
- $(B, \wedge,[]$,$) is a Gerstenhaber algebra;$
- $f: B \rightarrow Z(A)$ is a central morphism of algebras.

Theorem
$\pi \mathrm{SC} \simeq$ an operad whose algebras are triplets (M, N, F) where:

- (M, \otimes) is a monoidal category;
- $(\mathrm{N}, \otimes, \tau)$ is a braided monoidal category;
- $F: N \rightarrow \mathcal{Z}(M)$ is a braided functor to the "Drinfeld center"

Recap

Topological \Rightarrow Algebraical $H_{*}(-) \Longleftarrow$ Categorical $\pi(-)$

D_{1}	32	associative (A, \cdot)	monoidal (M, \otimes)
D_{2}		Gerstenhaber (B, $($, [,])	braided ($\mathrm{N}, \otimes, \tau)$
SC		$(B, \wedge,[],) \xrightarrow{f} Z(A, \cdot)$	$(\mathrm{N}, \otimes, \tau) \xrightarrow{\mathrm{F}} \mathcal{Z}(\mathrm{M}, \otimes)$

Remark

I also build a model PaP $\widehat{\mathrm{CD}}_{+}^{\phi}=$ " $\mathrm{PaP} \rtimes_{\phi} \widehat{\mathrm{CD}}_{+}$" out of a Drinfeld associator ϕ, following Tamarkin's proof of the formality of D_{2}.

The Lambrechts-Stanley Model of Configuration Spaces

Models

We are interested in rational/real models

$$
A \simeq \Omega^{*}(M) \text { "forms on } M " \text { (e.g. de Rham, piecewise polynomial...) }
$$

where A is an "explicit" CDGA (= commutative Differential Graded Algebra)
M nilpotent of finite type $\Longrightarrow A$ contains all the rational/real homotopy type of M

We're looking for a CDGA $\simeq \Omega^{*}\left(\operatorname{Conf}_{k}(M)\right)$ built from A

Formality of $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$

$\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$ is a formal space, i.e. [Kontsevich]:

$$
H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right) \simeq \Omega^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)
$$

completely determines the rational homotopy type of $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$
Theorem (Arnold 1969, Cohen 1976)

- $H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)=S\left(\omega_{i j}\right)_{1 \leq i \neq j \leq k} / l$
- $\operatorname{deg} \omega_{i j}=n-1$
$\cdot I=\left(\omega_{j i}= \pm \omega_{i j}, \omega_{i j}^{2}=0, \omega_{i j} \omega_{j k}+\omega_{j k} \omega_{k i}+\omega_{k i} \omega_{i j}=0\right)$

Poincaré duality models

Poincaré duality CDGA (A, ε)

- A: finite type connected CDGA;
- $\varepsilon: A^{n} \rightarrow \mathbb{k}$ such that $\varepsilon \circ d=0$;
(e.g. $\left.\int_{M}(-)\right)$
- $A^{k} \otimes A^{n-k} \rightarrow \mathbb{k}, a \otimes b \mapsto \varepsilon(a b)$ non degenerate. $\quad\left(\right.$ e.s. $\left.H^{k}(M) \otimes H^{n-k}(M) \rightarrow \mathbb{k}\right)$

Theorem (Lambrechts-Stanley 2004)

Any simply connected manifold has such a model

Remark

By a result of Longoni-Salvatore (2005), \exists non simply-connected $L \simeq L^{\prime}$ but $\operatorname{Conf}_{k}(L) \nsucceq \operatorname{Conf}_{k}\left(L^{\prime}\right)$

The Lambrechts-Stanley model

$G_{A}(k)$ conjectured model of $\operatorname{Conf}_{k}(M)=M^{\times k} \backslash \bigcup_{i \neq j} \Delta_{i j}$

- "Generators": $A^{\otimes k} \otimes S\left(\omega_{i j}\right)_{1 \leq i \neq j \leq k}$
- Relations:
- Arnold relations
- $p_{i}^{*}(a) \cdot \omega_{i j}=p_{j}^{*}(a) \cdot \omega_{i j}$.

$$
\begin{array}{r}
\left(\omega_{j i}= \pm \omega_{i j}, \omega_{i j}^{2}=\omega_{i j} \omega_{j k}+\omega_{j k} \omega_{k i}+\omega_{k i} \omega_{i j}=0\right) \\
\quad\left(p_{i}^{*}(a)=1 \otimes \cdots \otimes 1 \otimes a \otimes 1 \otimes \cdots \otimes 1\right)
\end{array}
$$

- $d \omega_{i j}=\left(p_{i}^{*} \cdot p_{j}^{*}\right)\left(\Delta_{A}\right)$ kills the dual of $\left[\Delta_{i j}\right]$.

Theorem (Lambrechts-Stanley 2008)

$$
\operatorname{dim}_{\mathbb{Q}} H^{i}\left(\operatorname{Conf}_{\mathbb{R}}(M)\right)=\operatorname{dim}_{\mathbb{Q}} H^{i}\left(G_{A}(k)\right)
$$

First part of the theorem

$\mathrm{G}_{A}(k)$ was known to be a rational model of $\operatorname{Conf}_{k}(M)$ in a few cases:

- M smooth projective complex variety [Kriz];
- $k=2$ and M is 2 -connected [Lambrechts-Stanley];
- $k=2$ and $\operatorname{dim} M$ is even [Cordova Bulens]...

Theorem

Let M be a smooth, closed, simply connected manifold of dimension
≥ 4. Then $\mathrm{G}_{A}(k)$ is a model over \mathbb{R} of $\operatorname{Conf}_{k}(M)$ for all $k \geq 0$.

Corollary

The real homotopy type of $\operatorname{Conf}_{k}(M)$ only depends on the real homotopy type of M :

$$
M \simeq_{\mathbb{R}} N \Longrightarrow \operatorname{Conf}_{k}(M) \simeq_{\mathbb{R}} \operatorname{Conf}_{k}(N)
$$

Operads

Ideas \& Goals

Adapt the construction for D_{n} \& keep track of the D_{n}-action whenever it exists

Fulton-MacPherson compactification $\operatorname{Conf}_{k}(M) \stackrel{\sim}{\hookrightarrow} F M_{M}(k)$

Understanding $\mathrm{FM}_{M}(\# 1)$

Understanding $\mathrm{FM}_{M}(\# 2)$

Understanding $\mathrm{FM}_{M}(\# 3)$

Compactifying $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$

Can also compactify $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right) \xrightarrow{\sim} \operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right) /\left(\mathbb{R}^{n} \rtimes \mathbb{R}_{+}^{*}\right) \stackrel{\sim}{\hookrightarrow} \mathrm{FM}_{n}(k)$

(+ normalization to deal with \mathbb{R}^{n} being noncompact)

Operads

$\mathrm{FM}_{n}=\left\{\mathrm{FM}_{n}(k)\right\}_{k \geq 0}$ is an operad $\simeq \mathrm{D}_{n}$

$\mathrm{FM}_{n}(k) \times \mathrm{FM}_{n}(l) \xrightarrow{\mathrm{o}_{i}} \mathrm{FM}_{n}(k+l-1), \quad 1 \leq i \leq k$

Modules over operads

M framed $\Longrightarrow F M_{M}=\left\{\mathrm{FM}_{M}(k)\right\}_{k \geq 0}$ is a right $F M_{n}$-module $\simeq \mathrm{D}_{M}$

$\mathrm{FM}_{M}(k) \times \mathrm{FM}_{n}(l) \xrightarrow{\rho_{i}} \mathrm{FM}_{M}(k+l-1), \quad 1 \leq i \leq k$

Cohomology of FM_{n} and coaction on G_{A}

$H^{*}\left(\mathrm{FM}_{n}\right)$ inherits a Hopf cooperad structure
One can rewrite:

$$
\mathrm{G}_{A}(k)=\left(A^{\otimes k} \otimes H^{*}\left(\mathrm{FM}_{n}(k)\right) / \text { relations, } d\right)
$$

Proposition

$\chi(M)=0 \Longrightarrow G_{A}=\left\{G_{A}(k)\right\}_{k \geq 0}$ is a Hopf right $H^{*}\left(F M_{n}\right)$-comodule

Motivation

We are looking for something to put here:

$$
\mathrm{G}_{A}(k) \stackrel{\sim}{\leftarrow} ? \xrightarrow{\sim} \Omega^{*}\left(\mathrm{FM}_{M}(k)\right)
$$

If true, then hopefully it fits in a diagram like this:

Already known: formality of the little disks operads

Kontsevich's graph complexes

[Kontsevich] Hopf cooperad Graphs ${ }_{n}=\left\{\operatorname{Graphs}_{n}(k)\right\}_{k \geq 0}$

Theorem (Kontsevich 1999, Lambrechts-Volić 2014)

$$
\begin{gathered}
H^{*}\left(\mathrm{FM}_{n} ; \mathbb{R}\right) \longleftarrow \text { Graphs }_{n} \longrightarrow \Omega_{\mathrm{PA}}^{*}\left(\mathrm{FM}_{n}\right) \\
\omega_{\mathrm{ij}} \longleftrightarrow \text { (i) explicit representatives } \\
0 \longleftrightarrow \text { "explicit" integrals }
\end{gathered}
$$

Complete version of the theorem

Idea
Build Graphs ${ }_{R}^{Z_{\varepsilon}}$ from Graphs s_{n} similar to how G_{A} is built from $H^{*}\left(F M_{n}\right)$
Theorem (Complete version)
M : closed, simply connected, smooth manifold with dim ≥ 4
$\mathrm{G}_{\mathrm{A}} \longleftarrow \sim \operatorname{Graphs}_{R}^{\mathrm{Z}_{\varepsilon}} \underset{\sim}{\sim} \Omega_{\mathrm{PA}}^{*}\left(\mathrm{FM}_{M}\right)$

$H^{*}\left(\mathrm{FM}_{n}\right) \stackrel{\sim}{\sim}$ Graphs $_{n} \xrightarrow{\sim} \Omega_{\mathrm{PA}}^{*}\left(\mathrm{FM}_{n}\right)$
\dagger When $\chi(M)=0$
\ddagger When M is framed

$$
A \stackrel{\sim}{\longleftarrow} R \xrightarrow{\sim} \Omega_{\mathrm{PA}}^{*}(M)
$$

Configuration Spaces of Manifolds with Boundary

Poincaré-Lefschetz duality models

Now: $\partial M \neq \varnothing \Longrightarrow H^{*}(M) \cong H_{n-*}(M, \partial M)$ for M oriented
Poincaré-Lefschetz duality pair $\left(B \xrightarrow{\lambda} B_{\partial}\right)$:

- $\left(B_{\partial}, \varepsilon_{\partial}\right)$ Poincaré duality CDGA of dimension $n-1$;
- B: fin. type connected CDGA;
- $\lambda: B \rightarrow B_{\partial}$: surjective CDGA morphism;
- $\varepsilon: B^{n} \rightarrow \mathbb{R}$ s.t. $\varepsilon(d y)=\varepsilon_{\partial}(\lambda(y))$;
- if $K=\operatorname{ker} \lambda$, then $\theta: B \rightarrow K^{\vee}[-n], b \mapsto \varepsilon(b \cdot-)$ is a surjective quasi-isomorphism.

$$
\left(K \simeq \Omega^{*}(M, \partial M)\right)
$$

In this case, $A:=B / \operatorname{ker} \theta$ is a model of M, and $\theta: A \xrightarrow{\cong} K^{\vee}[-n]$

Existence \& example of PLD models

Example

If $M=N \backslash\{*\}$ with N closed: take P a Poincaré duality model of N

$$
B=\left(P \oplus \mathbb{R} v_{n-1}, d v=\operatorname{vol}_{P}\right) \rightarrow B_{\partial}=H^{*}\left(S^{n-1}\right)=\left(\mathbb{R} \oplus \mathbb{R} v_{n-1}, d=0\right)
$$

Proposition

If M is simply connected, ∂M is simply connected, and $\operatorname{dim} M \geq 7$, then $(M, \partial M)$ admits a PLD model.

Remark

Also true if M admits a "surjective pretty model", cf. theorems of Cordova Bulens and Cordova Bulens-Lambrechts-Stanley.

The "naïve" dg-module G_{A}

Given a PLD model $\left(B, B_{\partial}\right)$ and $A=B / \operatorname{ker} \theta$, can build $G_{A}(k)$ as before.

Theorem

$$
\operatorname{dim} H^{i}\left(\operatorname{Conf}_{k}(M)\right)=\operatorname{dim} H^{i}\left(G_{A}(k)\right)
$$

Idea of proof

Combine:

- Techniques of Lambrechts-Stanley to compute homology of spaces of the type $M^{k} \backslash \bigcup_{i \neq j} \Delta_{i j}$;
- Techniques of Cordova Bulens-L-S to compute homology of $M=N \backslash X$ where N is a closed manifold and $X \subset N$ is a sub-polyhedron.

The actual model

In general, $\mathrm{G}_{\mathrm{A}}(k)$ is not actually a CDGA model for $\operatorname{Conf}_{k}(M)$.

Motivation

$M=S^{1} \times(0,1) \cong \mathbb{R}^{2} \backslash\{0\} \Longrightarrow \operatorname{Conf}_{2}(M) \simeq \operatorname{Conf}_{3}\left(\mathbb{R}^{2}\right)$
Then $A=H^{*}(M)=\mathbb{R} \oplus \mathbb{R} \eta$. In $\mathcal{G}_{A}(2)$, relation $(1 \otimes \eta) \omega_{12}=(\eta \otimes 1) \omega_{12}$.
But in $\operatorname{Conf}_{3}\left(\mathbb{R}^{2}\right)$, Arnold relation: $(1 \otimes \eta) \omega_{12}=(\eta \otimes 1) \omega_{12} \pm(\eta \otimes \eta)$.
\Longrightarrow must define a "perturbed model" $\tilde{G}_{A}(k)$

Proposition

Isomorphism of dg-modules $G_{A}(k) \cong \tilde{G}_{A}(k)$.

Swiss-Cheese \& graphs

M looks like \mathbb{H}^{n} (locally) \Longrightarrow Swiss-Cheese operad

Theorem (Willwacher 2015)
Model SGraphs ${ }_{n}$ for SFM $_{n}=\overline{\operatorname{Conf}_{\bullet \bullet}\left(\mathbb{H}^{n}\right)} \simeq$ SC $_{n}$:

Theorem for manifolds with boundary

Using similar techniques:

Theorem

For M a smooth, compact manifold of dimension at least $\geq 7, M$ and ∂M simply connected:

$$
\begin{aligned}
& \tilde{\mathrm{G}}_{\mathrm{A}} \longleftarrow \sim \operatorname{Graphs}_{R}^{Z_{\varepsilon}}--\sim-->\Omega_{\mathrm{PA}}^{*}\left(\mathrm{SFM}_{M}(\varnothing,-)\right) \\
& \bigcirc \text { O o } \\
& H^{*}\left(\mathrm{FM}_{n}\right) \stackrel{\sim}{\sim} \text { Graphs }_{n} \longrightarrow \sim \Omega_{\mathrm{PA}}^{*}\left(\mathrm{FM}_{n}\right)
\end{aligned}
$$

 the (co)action of SGraphs ${ }_{n} /$ SFM $_{n}$

Fin de la présentation

