Curved Koszul Duality for Algebras over Unital Operads

Najib Idrissi
June 2018 @ Séminaire de mathématiques supérieures - Fields Institute

EHHzürich

Eltablished by ba Eurosean Commission

MAIN GOAL: FACTORIZATION HOMOLOGY

M: manifold of dimension n

MAIN GOAL: FACTORIZATION HOMOLOGY

M: manifold of dimension n
A: $u \mathrm{E}_{n}$-algebra = locally constant (framed) factorization algebra on \mathbb{R}^{n}

MAIN GOAL: FACTORIZATION HOMOLOGY

M: manifold of dimension n
A: $u \mathrm{E}_{n}$-algebra = locally constant (framed) factorization algebra on \mathbb{R}^{n}

Main goal

"Compute" $\int_{M} A$.

MAIN GOAL: FACTORIZATION HOMOLOGY

M: manifold of dimension n
A: $u \mathrm{E}_{n}$-algebra = locally constant (framed) factorization algebra on \mathbb{R}^{n}
Main goal
"Compute" $\int_{M} A$.
Tool:
Theorem (Francis 2015)
$\int_{M} A \simeq E_{M} \circ \stackrel{\mathbb{L}}{\mathbb{L}} E_{n} A$, where:
$u E_{n}(k)=\operatorname{Emb}^{\mathrm{fr}}(\underbrace{\mathbb{R}^{n} \sqcup \cdots \sqcup \mathbb{R}^{n}}_{k \times}, \mathbb{R}) ; \quad \mathrm{E}_{M}(k)=\operatorname{Emb}^{\mathrm{fr}}(\underbrace{\mathbb{R}^{n} \sqcup \cdots \sqcup \mathbb{R}^{n}}_{k \times}, M)$.

Chains of factorization homology over \mathbb{R}

If we work over \mathbb{R} and we just want chains:

$$
C_{*}\left(\int_{M} A ; \mathbb{R}\right) \simeq C_{*}\left(\mathrm{E}_{M}\right) \circ \circ_{C_{*}\left(u \mathrm{E}_{n}\right)}^{\mathbb{L}} C_{*}(A) .
$$

CHAINS OF FACTORIZATION HOMOLOGY OVER \mathbb{R}

If we work over \mathbb{R} and we just want chains:

$$
C_{*}\left(\int_{M} A ; \mathbb{R}\right) \simeq C_{*}\left(E_{M}\right) \circ \circ_{C_{*}\left(u E_{n}\right)}^{\mathbb{L}} C_{*}(A) .
$$

Theorem (Kontsevich '99; Tamarkin '03 ($n=2$); Lambrechts-Volić '14; Petersen '14 ($n=2$); Fresse-Willwacher '15)
The operad $C_{*}\left(u E_{n}\right)$ is formal: $C_{*}\left(u E_{n}\right) \simeq H_{*}\left(u E_{n}\right)$.

Chains of factorization homology over \mathbb{R}

If we work over \mathbb{R} and we just want chains:

$$
C_{*}\left(\int_{M} A ; \mathbb{R}\right) \simeq C_{*}\left(E_{M}\right) \circ \circ_{C_{*}\left(u E_{n}\right)}^{\mathbb{L}} C_{*}(A)
$$

Theorem (Kontsevich '99; Tamarkin '03 ($n=2$); Lambrechts-Volić '14; Petersen '14 ($n=2$); Fresse-Willwacher '15)
The operad $C_{*}\left(u E_{n}\right)$ is formal: $C_{*}\left(u E_{n}\right) \simeq H_{*}\left(u E_{n}\right)$.
Theorem (I. 2016)
M closed, simply connected, smooth, $\operatorname{dim} M \geq 4 \Longrightarrow$ explicit model of $C_{*}\left(\mathrm{E}_{M}\right)$ as a right $C_{*}\left(u \mathrm{E}_{n}\right)$-module: Lambrechts-Stanley model LS_{M}.

Chains of factorization homology over \mathbb{R}

If we work over \mathbb{R} and we just want chains:

$$
C_{*}\left(\int_{M} A ; \mathbb{R}\right) \simeq C_{*}\left(E_{M}\right) \circ \circ_{C_{*}\left(u E_{n}\right)}^{\mathbb{L}} C_{*}(A)
$$

Theorem (Kontsevich '99; Tamarkin '03 ($n=2$); Lambrechts-Volić '14; Petersen '14 ($n=2$); Fresse-Willwacher '15)
The operad $C_{*}\left(u E_{n}\right)$ is formal: $C_{*}\left(u E_{n}\right) \simeq H_{*}\left(u E_{n}\right)$.
Theorem (I. 2016)
M closed, simply connected, smooth, $\operatorname{dim} M \geq 4 \Longrightarrow$ explicit model of $C_{*}\left(\mathrm{E}_{M}\right)$ as a right $C_{*}\left(u \mathrm{E}_{n}\right)$-module: Lambrechts-Stanley model LS_{M}.

Upshot: $C_{*}\left(\int_{M} A\right) \simeq L S_{M} \circ_{H_{*}\left(u E_{n}\right)}^{\mathbb{L}} A$

SUB-GOAL: RESOLUTIONS

Upshot: $C_{*}\left(\int_{M} A\right) \simeq L S_{M} \circ \frac{\mathbb{H}}{*}\left(u E_{n}\right) A$

SUB-GOAL: RESOLUTIONS

Upshot: $C_{*}\left(\int_{M} A\right) \simeq L S_{M} \circ \frac{\mathbb{H}}{H_{*}\left(u E_{n}\right)} A$

- A is given;

SUB-GOAL: RESOLUTIONS

Upshot: $C_{*}\left(\int_{M} A\right) \simeq L S_{M} \circ_{H_{*}\left(u E_{n}\right)}^{\mathbb{L}} A$

- A is given;
- $H_{*}\left(u E_{n}\right)$ is well-known: operad of unital Poisson n-algebras;

SUB-GOAL: RESOLUTIONS

Upshot: $C_{*}\left(\int_{M} A\right) \simeq L S_{M} \circ_{H_{*}\left(u E_{n}\right)}^{\mathbb{L}} A$

- A is given;
- $H_{*}\left(u \mathrm{E}_{n}\right)$ is well-known: operad of unital Poisson n-algebras;
- LS_{M} is explicit (Chevalley-Eilenberg complex + ...);

SUB-GOAL: RESOLUTIONS

Upshot: $C_{*}\left(\int_{M} A\right) \simeq L S_{M} \circ_{H_{*}\left(u E_{n}\right)}^{\mathbb{L}} A$

- A is given;
- $H_{*}\left(u E_{n}\right)$ is well-known: operad of unital Poisson n-algebras;
- LS_{M} is explicit (Chevalley-Eilenberg complex + ...);
- \mathbb{L} : we must take a (quasi-free/cofibrant) resolution $Q_{A} \xrightarrow{\sim} A$, then $C_{*}\left(\int_{M} A\right) \simeq L S_{M} \circ_{H_{*}\left(E_{n}\right)} Q_{A}$.

SUB-GOAL: RESOLUTIONS

Upshot: $C_{*}\left(\int_{M} A\right) \simeq \operatorname{LS}_{M} \circ \mathbb{L}_{H_{*}\left(u E_{n}\right)} A$

- A is given;
- $H_{*}\left(u E_{n}\right)$ is well-known: operad of unital Poisson n-algebras;
- LS_{M} is explicit (Chevalley-Eilenberg complex + ...);
- \mathbb{L} : we must take a (quasi-free/cofibrant) resolution $Q_{A} \xrightarrow{\sim} A$, then $C_{*}\left(\int_{M} A\right) \simeq \mathrm{LS}_{M} \circ_{H_{*}\left(E_{n}\right)} Q_{A}$.

New goal

How to find resolutions of unital Poisson n-algebras?

SUB-GOAL: RESOLUTIONS

Upshot: $C_{*}\left(\int_{M} A\right) \simeq L S_{M} \circ_{H_{*}\left(u E_{n}\right)}^{\mathbb{L}} A$

- A is given;
- $H_{*}\left(u E_{n}\right)$ is well-known: operad of unital Poisson n-algebras;
- LS_{M} is explicit (Chevalley-Eilenberg complex + ...);
- \mathbb{L} : we must take a (quasi-free/cofibrant) resolution $Q_{A} \xrightarrow{\sim} A$, then $C_{*}\left(\int_{M} A\right) \simeq \mathrm{LS}_{M} \circ_{H_{*}\left(E_{n}\right)} Q_{A}$.

New goal

How to find resolutions of unital Poisson n-algebras?
\rightarrow Tool: Koszul duality

Quadratic algebras - Koszul duals

Starting data: quadratic algebra $A=F(E) /(R), \quad R \subset E \otimes E$

Quadratic algebras - Koszul duals

Starting data: quadratic algebra $A=F(E) /(R), \quad R \subset E \otimes E$ \rightsquigarrow Koszul dual A^{i} : cofree coalgebra on ΣE with "corelations" $\Sigma^{2} V$

Quadratic algebras - Koszul duals

Starting data: quadratic algebra $A=F(E) /(R), \quad R \subset E \otimes E$ \rightsquigarrow Koszul dual A^{i} : cofree coalgebra on ΣE with "corelations" $\Sigma^{2} V$ (Usually easier to understand $A^{!}=F\left(E^{*}\right) /\left(R^{\perp}\right)$)

QUADRATIC ALGEBRAS - KOSZUL DUALS

Starting data: quadratic algebra $A=F(E) /(R), \quad R \subset E \otimes E$ \rightsquigarrow Koszul dual A^{i} : cofree coalgebra on ΣE with "corelations" $\Sigma^{2} V$ (Usually easier to understand $A^{!}=F\left(E^{*}\right) /\left(R^{\perp}\right)$)

Examples

1. $A=F(E), R=0 \Longrightarrow A^{!}=1 \oplus E^{*}$ with trivial multiplication;

Quadratic algebras - Koszul duals

Starting data: quadratic algebra $A=F(E) /(R), \quad R \subset E \otimes E$
\rightsquigarrow Koszul dual A^{i} : cofree coalgebra on ΣE with "corelations" $\Sigma^{2} V$ (Usually easier to understand $A^{!}=F\left(E^{*}\right) /\left(R^{\perp}\right)$)

Examples

1. $A=F(E), R=0 \Longrightarrow A^{!}=1 \oplus E^{*}$ with trivial multiplication;
2. $A=S(E)=F(E) /(x y-y x) \Longrightarrow A^{!}=F\left(E^{*}\right) /\left(x^{*} y^{*}+y^{*} x^{*}\right)=\Lambda\left(E^{*}\right)$.

Quadratic algebras - Koszul duals

Starting data: quadratic algebra $A=F(E) /(R), \quad R \subset E \otimes E$
\rightsquigarrow Koszul dual A^{\prime} : cofree coalgebra on ΣE with "corelations" $\Sigma^{2} V$ (Usually easier to understand $A^{!}=F\left(E^{*}\right) /\left(R^{\perp}\right)$)

Examples

1. $A=F(E), R=0 \Longrightarrow A^{!}=1 \oplus E^{*}$ with trivial multiplication;
2. $A=S(E)=F(E) /(x y-y x) \Longrightarrow A^{!}=F\left(E^{*}\right) /\left(x^{*} y^{*}+y^{*} x^{*}\right)=\Lambda\left(E^{*}\right)$.
\Longrightarrow Koszul complex $K_{A}:=\left(A \otimes A^{i}, d_{\kappa}\right)$;

Quadratic algebras - Koszul duals

Starting data: quadratic algebra $A=F(E) /(R), \quad R \subset E \otimes E$
\rightsquigarrow Koszul dual A^{i} : cofree coalgebra on ΣE with "corelations" $\Sigma^{2} V$ (Usually easier to understand $A^{!}=F\left(E^{*}\right) /\left(R^{\perp}\right)$)

Examples

1. $A=F(E), R=0 \Longrightarrow A^{!}=1 \oplus E^{*}$ with trivial multiplication;
2. $A=S(E)=F(E) /(x y-y x) \Longrightarrow A^{!}=F\left(E^{*}\right) /\left(x^{*} y^{*}+y^{*} x^{*}\right)=\Lambda\left(E^{*}\right)$.
\Longrightarrow Koszul complex $K_{A}:=\left(A \otimes A^{i}, d_{\kappa}\right)$; A is Koszul if K_{A} is acyclic

Example

$F(E)$ and $S(E)$ are both Koszul.

Quadratic algebras - Koszul resolutions

Bar/cobar adjunction:
$\Omega:\{$ coaug.coalgebras $\} \leftrightarrows$ \{aug.algebras $\}: B$
where $B A=\left(F^{C}(\Sigma \bar{A}), d_{B}\right)$ and $\Omega C=\left(F\left(\Sigma^{-1} \bar{C}\right), d_{\Omega}\right)$.

Quadratic algebras - Koszul resolutions

Bar/cobar adjunction:
$\Omega:\{$ coaug.coalgebras $\} \leftrightarrows$ \{aug.algebras $\}: B$
where $B A=\left(F^{C}(\Sigma \bar{A}), d_{B}\right)$ and $\Omega C=\left(F\left(\Sigma^{-1} \bar{C}\right), d_{\Omega}\right)$.
Canonical morphism $\Omega B A \xrightarrow{\sim} A$ is always a cofibrant resolution...

Quadratic algebras - Koszul resolutions

Bar/cobar adjunction:
$\Omega:\{$ coaug.coalgebras $\} \leftrightarrows$ \{aug.algebras $\}: B$
where $B A=\left(F^{C}(\Sigma \bar{A}), d_{B}\right)$ and $\Omega C=\left(F\left(\Sigma^{-1} \bar{C}\right), d_{\Omega}\right)$.
Canonical morphism $\Omega B A \xrightarrow{\sim} A$ is always a cofibrant resolution...but big!

Quadratic algebras - Koszul resolutions

Bar/cobar adjunction:
$\Omega:\{$ coaug.coalgebras $\} \leftrightarrows$ \{aug.algebras $\}: B$
where $B A=\left(F^{C}(\Sigma \bar{A}), d_{B}\right)$ and $\Omega C=\left(F\left(\Sigma^{-1} \bar{C}\right), d_{\Omega}\right)$.
Canonical morphism $\Omega B A \xrightarrow{\sim} A$ is always a cofibrant resolution...but big! A quadratic $\Longrightarrow \exists$ canonical morphism $\Omega A^{i} \rightarrow A$

Quadratic algebras - Koszul resolutions

Bar/cobar adjunction:
$\Omega:\{$ coaug.coalgebras $\} \leftrightarrows$ \{aug.algebras $\}: B$
where $B A=\left(F^{C}(\Sigma \bar{A}), d_{B}\right)$ and $\Omega C=\left(F\left(\Sigma^{-1} \bar{C}\right), d_{\Omega}\right)$.
Canonical morphism $\Omega B A \xrightarrow{\sim} A$ is always a cofibrant resolution...but big! A quadratic $\Longrightarrow \exists$ canonical morphism $\Omega A^{i} \rightarrow A$
Theorem (Priddy '70s)
A is Koszul $\Longleftrightarrow \Omega A^{i} \xrightarrow{\sim} A$.

Quadratic algebras - Koszul resolutions

Bar/cobar adjunction:
$\Omega:\{$ coaug.coalgebras $\} \leftrightarrows$ \{aug.algebras $\}: B$
where $B A=\left(F^{C}(\Sigma \bar{A}), d_{B}\right)$ and $\Omega C=\left(F\left(\Sigma^{-1} \bar{C}\right), d_{\Omega}\right)$.
Canonical morphism $\Omega B A \xrightarrow{\sim} A$ is always a cofibrant resolution...but big!
A quadratic $\Longrightarrow \exists$ canonical morphism $\Omega A^{i} \rightarrow A$
Theorem (Priddy '70s)
A is Koszul $\Longleftrightarrow \Omega A^{i} \xrightarrow{\sim} A$.
Much smaller resolution!

Examples

$$
\begin{aligned}
& A=F(E) \Longrightarrow \Omega A^{i}=A \\
& A=S(E) \Longrightarrow \Omega A^{i}=F\left(\Lambda^{c}(E)\right), \text { to compare with } \Omega B A=F\left(F^{c}(S(E))\right) .
\end{aligned}
$$

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=u F(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=u F(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$ Koszul dual $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$: curved dg-coalgebra

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=u F(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$ Koszul dual $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$: curved dg-coalgebra

- quadratic $\rightsquigarrow q A:=F(E) /(q R)$ where $q R:=\operatorname{proj}_{\otimes_{\otimes 2}}(R)$;

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=u F(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$
Koszul dual $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$: curved dg-coalgebra

- quadratic $\rightsquigarrow q A:=F(E) /(q R)$ where $q R:=\operatorname{proj}_{E_{\otimes 2}(R)}(;$
- linear $\rightsquigarrow d_{A^{i}}: q A^{i} \rightarrow q A^{i}$ is a coderivation;

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=u F(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$
Koszul dual $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$: curved dg-coalgebra

- quadratic $\rightsquigarrow q A:=F(E) /(q R)$ where $q R:=\operatorname{proj}_{E_{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: q A^{i} \rightarrow q A^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A^{i}}: A^{i} \rightarrow \mathbb{R}$ s.t. $d^{2}=(\theta \otimes \operatorname{id} \mp \mathrm{id} \otimes \theta) \Delta$ and $\theta d=0$.

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=u F(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$
Koszul dual $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$: curved dg-coalgebra

- quadratic $\rightsquigarrow q A:=F(E) /(q R)$ where $q R:=\operatorname{proj}_{E_{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: q A^{i} \rightarrow q A^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A i}: A^{i} \rightarrow \mathbb{R}$ s.t. $d^{2}=(\theta \otimes \operatorname{id} \mp \mathrm{id} \otimes \theta) \Delta$ and $\theta d=0$.

Example

$A=U(\mathfrak{g})=F(\mathfrak{g}) /(x y-y x-[x, y])$

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=u F(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$
Koszul dual $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$: curved dg-coalgebra

- quadratic $\rightsquigarrow q A:=F(E) /(q R)$ where $q R:=\operatorname{proj}_{E_{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: q A^{i} \rightarrow q A^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A i}: A^{i} \rightarrow \mathbb{R}$ s.t. $d^{2}=(\theta \otimes \operatorname{id} \mp \mathrm{id} \otimes \theta) \Delta$ and $\theta d=0$.

Example

$A=U(\mathfrak{g})=F(\mathfrak{g}) /(x y-y x-[x, y]) \rightsquigarrow q A=F(\mathfrak{g}) /(x y-y x)=S(\mathfrak{g})$

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=u F(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$
Koszul dual $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$: curved dg-coalgebra

- quadratic $\rightsquigarrow q A:=F(E) /(q R)$ where $q R:=\operatorname{proj}_{E_{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: q A^{i} \rightarrow q A^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A i}: A^{i} \rightarrow \mathbb{R}$ s.t. $d^{2}=(\theta \otimes \operatorname{id} \mp \mathrm{id} \otimes \theta) \Delta$ and $\theta d=0$.

Example

$A=U(\mathfrak{g})=F(\mathfrak{g}) /(x y-y x-[x, y]) \rightsquigarrow q A=F(\mathfrak{g}) /(x y-y x)=S(\mathfrak{g}) \rightsquigarrow$ $q A^{i}=S^{C}(\Sigma \mathfrak{g}) ; d_{A^{i}}=$ coderivation induced by $d(x \wedge y)=[x, y]$

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=u F(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$
Koszul dual $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$: curved dg-coalgebra

- quadratic $\rightsquigarrow q A:=F(E) /(q R)$ where $q R:=\operatorname{proj}_{E_{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: q A^{i} \rightarrow q A^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A i}: A^{i} \rightarrow \mathbb{R}$ s.t. $d^{2}=(\theta \otimes \operatorname{id} \mp \mathrm{id} \otimes \theta) \Delta$ and $\theta d=0$.

Example

$A=U(\mathfrak{g})=F(\mathfrak{g}) /(x y-y x-[x, y]) \rightsquigarrow q A=F(\mathfrak{g}) /(x y-y x)=S(\mathfrak{g}) \rightsquigarrow$ $q A^{i}=S^{C}(\Sigma \mathfrak{g}) ; d_{A_{i}}=$ coderivation induced by $d(x \wedge y)=[x, y] \rightsquigarrow C_{*}^{C E}(\mathfrak{g})$

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=u F(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$
Koszul dual $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$: curved dg-coalgebra

- quadratic $\rightsquigarrow q A:=F(E) /(q R)$ where $q R:=\operatorname{proj}_{E_{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: q A^{i} \rightarrow q A^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A i}: A^{i} \rightarrow \mathbb{R}$ s.t. $d^{2}=(\theta \otimes \operatorname{id} \mp \mathrm{id} \otimes \theta) \Delta$ and $\theta d=0$.

Example

$A=U(\mathfrak{g})=F(\mathfrak{g}) /(x y-y x-[x, y]) \rightsquigarrow q A=F(\mathfrak{g}) /(x y-y x)=S(\mathfrak{g}) \rightsquigarrow$ $q A^{i}=S^{C}(\Sigma \mathfrak{g}) ; d_{A^{i}}=$ coderivation induced by $d(x \wedge y)=[x, y] \rightsquigarrow C_{*}^{C E}(\mathfrak{g})$

Bar/cobar adjunction: semi.aug.algebras \leftrightarrows curved dg-coalgebras.

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=u F(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$
Koszul dual $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$: curved dg-coalgebra

- quadratic $\rightsquigarrow q A:=F(E) /(q R)$ where $q R:=\operatorname{proj}_{E_{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: q A^{i} \rightarrow q A^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A i}: A^{i} \rightarrow \mathbb{R}$ s.t. $d^{2}=(\theta \otimes \operatorname{id} \mp \mathrm{id} \otimes \theta) \Delta$ and $\theta d=0$.

Example

$A=U(\mathfrak{g})=F(\mathfrak{g}) /(x y-y x-[x, y]) \rightsquigarrow q A=F(\mathfrak{g}) /(x y-y x)=S(\mathfrak{g}) \rightsquigarrow$ $q A^{i}=S^{C}(\Sigma \mathfrak{g}) ; d_{A_{i}}=$ coderivation induced by $d(x \wedge y)=[x, y] \rightsquigarrow C_{*}^{C E}(\mathfrak{g})$

Bar/cobar adjunction: semi.aug.algebras \leftrightarrows curved dg-coalgebras.

Theorem (Polischuck, Positselski)

If $q A$ is Koszul then $\Omega A^{i} \xrightarrow{\sim} A$ is a cofibrant resolution.

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=u F(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$
Koszul dual $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$: curved dg-coalgebra

- quadratic $\rightsquigarrow q A:=F(E) /(q R)$ where $q R:=\operatorname{proj}_{E_{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: q A^{i} \rightarrow q A^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A i}: A^{i} \rightarrow \mathbb{R}$ s.t. $d^{2}=(\theta \otimes \operatorname{id} \mp \mathrm{id} \otimes \theta) \Delta$ and $\theta d=0$.

Example

$A=U(\mathfrak{g})=F(\mathfrak{g}) /(x y-y x-[x, y]) \rightsquigarrow q A=F(\mathfrak{g}) /(x y-y x)=S(\mathfrak{g}) \rightsquigarrow$ $q A^{i}=S^{C}(\Sigma \mathfrak{g}) ; d_{A_{i}}=$ coderivation induced by $d(x \wedge y)=[x, y] \rightsquigarrow C_{*}^{C E}(\mathfrak{g})$

Bar/cobar adjunction: semi.aug.algebras \leftrightarrows curved dg-coalgebras.

Theorem (Polischuck, Positselski)

If $q A$ is Koszul then $\Omega A^{i} \xrightarrow{\sim} A$ is a cofibrant resolution.
Goal: do this for more general types of algebras (e.g. Poisson algebrás $\left.{ }^{6}\right)^{5}$.

OPERADS

What are "more general types of algebras"?

Operads

What are "more general types of algebras"?
Operad $\mathrm{P}=\{\mathrm{P}(n)\}_{n \geq 0}$: combinatorial object that encodes certain "types of algebras"

OPERADS

What are "more general types of algebras"?
Operad $\mathrm{P}=\{\mathrm{P}(n)\}_{n \geq 0}$: combinatorial object that encodes certain "types of algebras"

Examples

The "three graces": Ass = associative algebras; Com = commutative algebras; Lie = Lie algebras.

OPERADS

What are "more general types of algebras"?
Operad $\mathrm{P}=\{\mathrm{P}(n)\}_{n \geq 0}$: combinatorial object that encodes certain "types of algebras"

Examples

The "three graces": Ass = associative algebras; Com = commutative algebras; Lie = Lie algebras.
$E_{n}=$ homotopy associative and commutative (for $n \geq 2$) algebras.

OPERADS

What are "more general types of algebras"?
Operad $\mathrm{P}=\{\mathrm{P}(n)\}_{n \geq 0}$: combinatorial object that encodes certain "types of algebras"

Examples

The "three graces": Ass = associative algebras; Com = commutative algebras; Lie = Lie algebras.
$\mathrm{E}_{n}=$ homotopy associative and commutative (for $n \geq 2$) algebras. $H_{*}\left(E_{n}\right), n \geq 2$ = Poisson n-algebras.

KD FOR QUADRATIC OPERADS

Quadratic operad: $\mathrm{P}=\mathrm{FOp}(E) /(R)$ where E is a generating set of operations and $R \subset E \circ E$ is a set of quadratic relations.

KD FOR QUADRATIC OPERADS

Quadratic operad: $\mathrm{P}=\mathrm{FOp}(E) /(R)$ where E is a generating set of operations and $R \subset E \circ E$ is a set of quadratic relations.

Examples

Ass $=\operatorname{FOp}(\mu) /(\mu(\mu(x, y), z)=\mu(x, \mu(y, z)))$ is quadratic.

KD FOR QUADRATIC OPERADS

Quadratic operad: $\mathrm{P}=\mathrm{FOp}(E) /(R)$ where E is a generating set of operations and $R \subset E \circ E$ is a set of quadratic relations.

Examples

Ass $=\operatorname{FOp}(\mu) /(\mu(\mu(x, y), z)=\mu(x, \mu(y, z)))$ is quadratic.
Formally similar definitions: Koszul dual cooperad $\mathrm{P}^{\mathrm{i}}=\mathrm{FOp}^{c}\left(\Sigma E, \Sigma^{2} R\right)$ and its linear dual $\mathrm{P}^{!}=\mathrm{FOp}\left(E^{*}\right) /\left(R^{\perp}\right)$.

KD FOR QUADRATIC OPERADS

Quadratic operad: $\mathrm{P}=\mathrm{FOp}(E) /(R)$ where E is a generating set of operations and $R \subset E \circ E$ is a set of quadratic relations.

Examples

Ass $=\operatorname{FOp}(\mu) /(\mu(\mu(x, y), z)=\mu(x, \mu(y, z)))$ is quadratic.
Formally similar definitions: Koszul dual cooperad $\mathrm{Pi}^{\mathrm{i}}=\mathrm{FOp}^{c}\left(\Sigma E, \Sigma^{2} R\right)$ and its linear dual $\mathrm{P}^{!}=\mathrm{FOp}\left(E^{*}\right) /\left(R^{\perp}\right)$.

Examples

Ass $!=$ Ass; Com! $=$ Lie, Lie ${ }^{!}=$Com; $H_{*}\left(E_{n}\right)^{!}=H_{*}\left(E_{n}\right)\{-n\}$.

KOSZUL RESOLUTIONS FOR QUADRATIC OPERADS

Formally similar definitions: bar/cobar adjunction
$\Omega:$ \{coaug.cooperads\} \leftrightarrows \{aug.operads\} : B

KOSZUL RESOLUTIONS FOR QUADRATIC OPERADS

Formally similar definitions: bar/cobar adjunction $\Omega:\{$ coaug.cooperads $\} \leftrightarrows\{$ aug.operads $\}: B$

Canonical morphism $\Omega \mathrm{BP} \xrightarrow{\sim} \mathrm{P}$ always a resolution, but very big

KOSZUL RESOLUTIONS FOR QUADRATIC OPERADS

Formally similar definitions: bar/cobar adjunction

$$
\Omega:\{\text { coaug.cooperads }\} \leftrightarrows \text { \{aug.operads }\}: B
$$

Canonical morphism $\Omega \mathrm{BP} \xrightarrow{\sim} \mathrm{P}$ always a resolution, but very big
Theorem (Ginzburg-Kapranov '94, Getzler-Jones '94, Getzler '95...) If P is quadratic and Koszul, then $\mathrm{P}_{\infty}:=\Omega \mathrm{Pi} \xrightarrow{\sim} \mathrm{P}$.

KOSZUL RESOLUTIONS FOR QUADRATIC OPERADS

Formally similar definitions: bar/cobar adjunction

$$
\Omega:\{\text { coaug.cooperads }\} \leftrightarrows \text { \{aug.operads }\}: B
$$

Canonical morphism $\Omega \mathrm{BP} \xrightarrow{\sim} \mathrm{P}$ always a resolution, but very big
Theorem (Ginzburg-Kapranov '94, Getzler-Jones '94, Getzler '95...) If P is quadratic and Koszul, then $\mathrm{P}_{\infty}:=\Omega \mathrm{Pi}^{\sim} \xrightarrow{ } \mathrm{P}$.

In this case, P_{∞}-algebras are called "homotopy P -algebras" and have very nice properties (e.g. every weak equivalence is invertible).

KOSZUL RESOLUTIONS FOR QUADRATIC OPERADS

Formally similar definitions: bar/cobar adjunction

$$
\Omega:\{\text { coaug.cooperads }\} \leftrightarrows \text { \{aug.operads }\}: B
$$

Canonical morphism $\Omega \mathrm{BP} \xrightarrow{\sim} \mathrm{P}$ always a resolution, but very big
Theorem (Ginzburg-Kapranov '94, Getzler-Jones '94, Getzler '95...) If P is quadratic and Koszul, then $\mathrm{P}_{\infty}:=\Omega \mathrm{Pi}^{\sim} \xrightarrow{ } \mathrm{P}$.

In this case, P_{∞}-algebras are called "homotopy P -algebras" and have very nice properties (e.g. every weak equivalence is invertible).

Examples

Ass $_{\infty}=A_{\infty}$-algebras, Com $_{\infty}=C_{\infty}$-algebras, Lie ${ }_{\infty}=L_{\infty}$-algebras...

CURVED KD FOR QLC operads [HIRSH-MilLès]

Extension to operads with quadratic-linear-constant relations:

CURVED KD FOR QLC operads [Hirsh-Millès]

Extension to operads with quadratic-linear-constant relations:

Example

uAss $=\operatorname{FOp}(\mu, \bullet) /(\mu(\mu(x, y), z)=\mu(x, \mu(y, z)), \mu(x, \bullet)=x=\mu(\bullet, x))$

CURVED KD FOR QLC operads [Hirsh-Millès]

Extension to operads with quadratic-linear-constant relations:

Example

uAss $=\operatorname{FOp}(\mu, \bullet) /(\mu(\mu(x, y), z)=\mu(x, \mu(y, z)), \mu(x, \bullet)=x=\mu(\mathfrak{\imath}, x))$

Koszul dual curved cooperad: $u \mathrm{P}^{\mathrm{i}}=\left(q u \mathrm{P}^{\mathrm{i}}, d_{A^{\mathrm{i}}}, \theta_{\mathrm{A}^{\mathrm{i}}}\right)$

CURVED KD FOR QLC operads [Hirsh-Millès]

Extension to operads with quadratic-linear-constant relations:

Example

uAss $=\operatorname{FOp}(\mu, \bullet) /(\mu(\mu(x, y), z)=\mu(x, \mu(y, z)), \mu(x, \bullet)=x=\mu(\mathfrak{\imath}, x))$

Koszul dual curved cooperad: $u \mathrm{P}^{\mathrm{i}}=\left(q u \mathrm{P}^{\mathrm{i}}, d_{\mathrm{A}^{\mathrm{i}}}, \theta_{\mathrm{A}_{\mathrm{i}}}\right)$

- quP is the "quadratization" of uP;

CURVED KD FOR QLC operads [Hirsh-Millès]

Extension to operads with quadratic-linear-constant relations:

Example

uAss $=\operatorname{FOp}(\mu, \bullet) /(\mu(\mu(x, y), z)=\mu(x, \mu(y, z)), \mu(x, \bullet)=x=\mu(\mathfrak{\imath}, x))$

Koszul dual curved cooperad: $u \mathrm{P}^{\mathrm{i}}=\left(q u \mathrm{P}^{\mathrm{i}}, d_{\mathrm{A}^{\mathrm{i}}}, \theta_{\mathrm{A}_{\mathrm{i}}}\right)$

- quP is the "quadratization" of uP;
- linear $\rightsquigarrow d_{A^{i}}: q u \mathrm{P}^{\mathrm{i}} \rightarrow$ quPi coderivation;

Curved KD for QLC operads [Hirsh-Millès]

Extension to operads with quadratic-linear-constant relations:

Example

uAss $=\operatorname{FOp}(\mu, \bullet) /(\mu(\mu(x, y), z)=\mu(x, \mu(y, z)), \mu(x, \bullet)=x=\mu(\mathfrak{\imath}, x))$

Koszul dual curved cooperad: $u \mathrm{P}^{\mathrm{i}}=\left(q u \mathrm{P}^{\mathrm{i}}, d_{\mathrm{A}^{\mathrm{i}}}, \theta_{\mathrm{A}_{\mathrm{i}}}\right)$

- quP is the "quadratization" of uP;
- linear $\rightsquigarrow d_{A^{i}}: q u \mathrm{P}^{\mathrm{i}} \rightarrow$ quPi coderivation;
- constants $\rightsquigarrow \theta_{A i}: q u \mathrm{P}^{\mathrm{i}} \rightarrow \mathbb{R}$ id s.t. $d^{2}=(\theta \circ \mathrm{id} \mp \mathrm{id} \circ \theta) \Delta$ and $\theta d=0$

Curved KD for QLC operads [Hirsh-Millès]

Extension to operads with quadratic-linear-constant relations:

Example

uAss $=\operatorname{FOp}(\mu, \bullet) /(\mu(\mu(x, y), z)=\mu(x, \mu(y, z)), \mu(x, \bullet)=x=\mu(\mathfrak{\imath}, x))$

Koszul dual curved cooperad: $u \mathrm{P}^{\mathrm{i}}=\left(q u \mathrm{P}^{\mathrm{i}}, d_{\mathrm{A}^{\mathrm{i}}}, \theta_{\mathrm{A}_{\mathrm{i}}}\right)$

- quP is the "quadratization" of uP;
- linear $\rightsquigarrow d_{A^{i}}: q u \mathrm{P}^{\mathrm{i}} \rightarrow$ quPi coderivation;
- constants $\rightsquigarrow \theta_{A_{i}}: q u \mathrm{P}^{\mathrm{i}} \rightarrow \mathbb{R}$ id s.t. $d^{2}=(\theta \circ \mathrm{id} \mp \mathrm{id} \circ \theta) \Delta$ and $\theta d=0$

Bar/cobar extends to the curved setting

CURVED KD FOR QLC operads [HIRSH-MilLès]

Extension to operads with quadratic-linear-constant relations:

Example

uAss $=\operatorname{FOp}(\mu, \bullet) /(\mu(\mu(x, y), z)=\mu(x, \mu(y, z)), \mu(x, \bullet)=x=\mu(\bullet, x))$

Koszul dual curved cooperad: $u \mathrm{P}^{\mathrm{i}}=\left(q u \mathrm{P}^{\mathrm{i}}, d_{\mathrm{A}^{\mathrm{i}}}, \theta_{\mathrm{A}_{\mathrm{i}}}\right)$

- quP is the "quadratization" of uP;
- linear $\rightsquigarrow d_{A^{i}}: q u \mathrm{P}^{\mathrm{i}} \rightarrow q u \mathrm{Pi}^{\mathrm{i}}$ coderivation;
- constants $\rightsquigarrow \theta_{A_{i}}: q u \mathrm{P}^{\mathrm{i}} \rightarrow \mathbb{R}$ id s.t. $d^{2}=(\theta \circ \mathrm{id} \mp \mathrm{id} \circ \theta) \Delta$ and $\theta d=0$

Bar/cobar extends to the curved setting
Theorem (Hirsh-Millès '12)
If quP is Koszul, then $u \mathrm{P}_{\infty}:=\Omega(u \mathrm{Pi}) \xrightarrow{\sim} u \mathrm{P}$: resolution of $u \mathrm{P}$

KD FOR MONOGENIC ALGEBRAS [MILLÈS]

$$
\mathrm{P}=\mathrm{FOp}(E) /(R): \text { quadratic operad }
$$

KD FOR MONOGENIC ALGEBRAS [MILLÈS]

$\mathrm{P}=\mathrm{FOp}(E) /(R)$: quadratic operad \rightsquigarrow monogenic P -algebras:
$A=P(V) /(S), S \subset E(V)$

KD FOR MONOGENIC ALGEBRAS [MILLÈS]

$\mathrm{P}=\mathrm{FOp}(E) /(R)$: quadratic operad \rightsquigarrow monogenic P -algebras:
$A=P(V) /(S), S \subset E(V) \quad$ (P binary \Longrightarrow monogenic = quadratic)

KD FOR MONOGENIC ALGEBRAS [MILLÈS]

$\mathrm{P}=\mathrm{FOp}(E) /(R)$: quadratic operad \rightsquigarrow monogenic P -algebras:
$A=P(V) /(S), S \subset E(V) \quad(P$ binary \Longrightarrow monogenic $=$ quadratic $)$
Bar/cobar adjunction:

$$
\left.\Omega_{\kappa}:\{\text { coaug. Pi-coalgebras }\} \leftrightarrows \text { \{aug. P-algebras }\right\}: B_{\kappa}
$$

KD FOR MONOGENIC ALGEBRAS [MILLÈS]

$\mathrm{P}=\mathrm{FOp}(E) /(R)$: quadratic operad \rightsquigarrow monogenic \mathbf{P}-algebras:
$A=P(V) /(S), S \subset E(V) \quad(P$ binary \Longrightarrow monogenic = quadratic)
Bar/cobar adjunction:

$$
\left.\Omega_{\kappa}:\{\text { coaug. Pi-coalgebras }\} \leftrightarrows \text { \{aug. P-algebras }\right\}: B_{\kappa}
$$

Natural definition of the Koszul dual $A^{i} \in\left\{\mathrm{P}^{i}\right.$-coalgebras $\}$

Theorem (Millès '12)

If P is quadratic Koszul and if A is a Koszul monogenic algebra, then $\Omega_{\kappa} A^{i} \xrightarrow{\sim} A$ is a resolution of A.

KD FOR MONOGENIC ALGEBRAS [MILLÈS]

$\mathrm{P}=\mathrm{FOp}(E) /(R)$: quadratic operad \rightsquigarrow monogenic P -algebras:
$A=P(V) /(S), S \subset E(V) \quad(P$ binary \Longrightarrow monogenic = quadratic)
Bar/cobar adjunction:

$$
\left.\Omega_{\kappa}:\{\text { coaug. Pi-coalgebras }\} \leftrightarrows \text { \{aug. P-algebras }\right\}: B_{\kappa}
$$

Natural definition of the Koszul dual $A^{i} \in\left\{\mathrm{P}^{i}\right.$-coalgebras $\}$

Theorem (Millès '12)

If P is quadratic Koszul and if A is a Koszul monogenic algebra, then $\Omega_{\kappa} A^{i} \xrightarrow{\sim} A$ is a resolution of A.
$\mathrm{P}=$ Ass: recovers the classical Koszul duality of associative algebras.

Curved KD for algebras over binary unital operads

$u \mathrm{P}=\mathrm{FOp}(E) /(R)$: binary operad with a unit $\boldsymbol{\imath} \in u \mathrm{P}(0)+$ conditions

Curved KD for algebras over binary unital operads

$u \mathrm{P}=\mathrm{FOp}(E) /(R)$: binary operad with a unit $\boldsymbol{\imath} \in u \mathrm{P}(0)+$ conditions $A=u P(V) /(S)$: algebra with quadratic-linear-constant relations

Curved KD for algebras over binary unital operads

$u \mathrm{P}=\mathrm{FOp}(E) /(R)$: binary operad with a unit $\boldsymbol{\imath} \in u \mathrm{P}(0)+$ conditions $A=u \mathrm{P}(V) /(S)$: algebra with quadratic-linear-constant relations Koszul dual: curved Pi-coalgebra $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$

Curved KD for algebras over binary unital operads

$u \mathrm{P}=\mathrm{FOp}(E) /(R)$: binary operad with a unit $\boldsymbol{\imath} \in u \mathrm{P}(0)+$ conditions $A=u \mathrm{P}(V) /(S)$: algebra with quadratic-linear-constant relations

Koszul dual: curved Pi-coalgebra $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$

- $q A=P(V) /(q S)$: "quadratization" of A;

Curved KD for algebras over binary unital operads

$u \mathrm{P}=\mathrm{FOp}(E) /(R)$: binary operad with a unit $\boldsymbol{\imath} \in u \mathrm{P}(0)+$ conditions $A=u \mathrm{P}(V) /(S)$: algebra with quadratic-linear-constant relations

Koszul dual: curved Pi-coalgebra $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$

- $q A=P(V) /(q S)$: "quadratization" of A;
- linear $\rightsquigarrow d_{A i}$: coderivation;

Curved KD for algebras over binary unital operads

$u \mathrm{P}=\mathrm{FOp}(E) /(R)$: binary operad with a unit $\boldsymbol{\imath} \in u \mathrm{P}(0)+$ conditions $A=u \mathrm{P}(V) /(S)$: algebra with quadratic-linear-constant relations

Koszul dual: curved $\mathrm{P}^{\mathrm{i}-\text { coalgebra } A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right), ~(1) ~}$

- $q A=P(V) /(q S)$: "quadratization" of A;
- linear $\rightsquigarrow d_{A i}$: coderivation;
- constants $\rightsquigarrow \theta: q A^{i} \rightarrow \mathbb{R} \boldsymbol{i}$ (+ relations)

Curved KD for algebras over binary unital operads

$u \mathrm{P}=\mathrm{FOp}(E) /(R)$: binary operad with a unit $\boldsymbol{i} \in u \mathbf{P}(0)+$ conditions $A=u \mathrm{P}(\mathrm{V}) /(S)$: algebra with quadratic-linear-constant relations

Koszul dual: curved Pi-coalgebra $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$

- $q A=P(V) /(q S)$: "quadratization" of A;
- linear $\rightsquigarrow d_{A i}$: coderivation;
- constants $\rightsquigarrow \theta: q A^{i} \rightarrow \mathbb{R} \boldsymbol{i}$ (+ relations)

Generalization of bar/cobar adjunction:
$\Omega_{\kappa}:\left\{\right.$ curved $\mathrm{Pi}^{\text {i-coalgebras }\}} \leftrightarrows\{$ semi.aug. uP-algebras $\}: B_{\kappa}$

Curved KD for algebras over binary unital operads

$u \mathrm{P}=\mathrm{FOp}(E) /(R)$: binary operad with a unit $\boldsymbol{i} \in u \mathbf{P}(0)+$ conditions $A=u \mathrm{P}(\mathrm{V}) /(\mathrm{S})$: algebra with quadratic-linear-constant relations

- $q A=P(V) /(q S)$: "quadratization" of A;
- linear $\rightsquigarrow d_{A i}$: coderivation;
- constants $\rightsquigarrow \theta: q A^{i} \rightarrow \mathbb{R} \boldsymbol{i}$ (+ relations)

Generalization of bar/cobar adjunction: $\Omega_{\kappa}:\left\{\right.$ curved $\mathrm{Pi}^{\text {i-coalgebras }\}} \leftrightarrows\{$ semi.aug. uP-algebras $\}: B_{\kappa}$

Theorem (I. '18)
If $q A$ is Koszul then $\Omega_{\kappa} A{ }^{\sim} A$ is a resolution.

APPLICATION: Poly $\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

$$
A=\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)=S\left(x_{1}, \ldots, x_{d}, \xi_{1}, \ldots, \xi_{d}\right)
$$

APPLICATION: Poly $\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

$A=\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)=S\left(x_{1}, \ldots, x_{d}, \xi_{1}, \ldots, \xi_{d}\right)$
Action of $H_{*}\left(u E_{n}\right)$: free symmetric algebra and $\left\{x_{i}, \xi_{j}\right\}=\delta_{i j} 1$

APPLICATION: $\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

$A=\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)=S\left(x_{1}, \ldots, x_{d}, \xi_{1}, \ldots, \xi_{d}\right)$
Action of $H_{*}\left(u \mathrm{E}_{n}\right)$: free symmetric algebra and $\left\{x_{i}, \xi_{j}\right\}=\delta_{i j} 1$
\Longrightarrow quadratic-(linear-)constant presentation

APPLICATION: Poly $\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

$A=\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)=S\left(x_{1}, \ldots, x_{d}, \xi_{1}, \ldots, \xi_{d}\right)$
Action of $H_{*}\left(u E_{n}\right)$: free symmetric algebra and $\left\{x_{i}, \xi_{j}\right\}=\delta_{i j} 1$
\Longrightarrow quadratic-(linear-)constant presentation
Quadratization $\mathrm{qA}=S\left(x_{i}, \xi_{j}\right)$ free symmetric algebra + zero bracket

APPLICATION: Poly $\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

$A=\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)=S\left(x_{1}, \ldots, x_{d}, \xi_{1}, \ldots, \xi_{d}\right)$
Action of $H_{*}\left(u \mathrm{E}_{n}\right)$: free symmetric algebra and $\left\{x_{i}, \xi_{j}\right\}=\delta_{i j} 1$
\Longrightarrow quadratic-(linear-)constant presentation
Quadratization $\mathrm{qA}=S\left(x_{i}, \xi_{j}\right)$ free symmetric algebra + zero bracket Koszul dual: $A^{i}=\left(q A^{i}, d, \theta\right)$

- qAi $=S^{c}\left(\bar{x}_{i}, \bar{\xi}_{j}\right)$ cofree symmetric coalgebra + trivial cobracket

APPLICATION: Poly $\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

$A=\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)=S\left(x_{1}, \ldots, x_{d}, \xi_{1}, \ldots, \xi_{d}\right)$
Action of $H_{*}\left(u \mathrm{E}_{n}\right)$: free symmetric algebra and $\left\{x_{i}, \xi_{j}\right\}=\delta_{i j} 1$
\Longrightarrow quadratic-(linear-)constant presentation
Quadratization $q A=S\left(x_{i}, \xi_{j}\right)$ free symmetric algebra + zero bracket Koszul dual: $A^{i}=\left(q A^{i}, d, \theta\right)$

- $q A^{i}=S^{c}\left(\bar{x}_{i}, \bar{\xi}_{j}\right)$ cofree symmetric coalgebra + trivial cobracket
- $d=0$ (no linear terms in the relations)

APPLICATION: $\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

$A=\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)=S\left(x_{1}, \ldots, x_{d}, \xi_{1}, \ldots, \xi_{d}\right)$
Action of $H_{*}\left(u \mathrm{E}_{n}\right)$: free symmetric algebra and $\left\{x_{i}, \xi_{j}\right\}=\delta_{i j} 1$
\Longrightarrow quadratic-(linear-)constant presentation
Quadratization $q A=S\left(x_{i}, \xi_{j}\right)$ free symmetric algebra + zero bracket Koszul dual: $A^{i}=\left(q A^{i}, d, \theta\right)$

- $q A^{i}=S^{c}\left(\bar{x}_{i}, \bar{\xi}_{j}\right)$ cofree symmetric coalgebra + trivial cobracket
- $d=0$ (no linear terms in the relations)
- curvature: $\theta\left(\bar{x}_{i} \wedge \bar{\xi}_{j}\right)=-\delta_{i j}$, zero otherwise.

APPLICATION: $\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

$A=\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)=S\left(x_{1}, \ldots, x_{d}, \xi_{1}, \ldots, \xi_{d}\right)$
Action of $H_{*}\left(u \mathrm{E}_{n}\right)$: free symmetric algebra and $\left\{x_{i}, \xi_{j}\right\}=\delta_{i j} 1$
\Longrightarrow quadratic-(linear-)constant presentation
Quadratization $q A=S\left(x_{i}, \xi_{j}\right)$ free symmetric algebra + zero bracket Koszul dual: $A^{i}=\left(q A^{i}, d, \theta\right)$

- $q A^{i}=S^{c}\left(\bar{x}_{i}, \bar{\xi}_{j}\right)$ cofree symmetric coalgebra + trivial cobracket
- $d=0$ (no linear terms in the relations)
- curvature: $\theta\left(\bar{x}_{i} \wedge \bar{\xi}_{j}\right)=-\delta_{i j}$, zero otherwise.
\Longrightarrow "small" resolution $Q_{A}:=\Omega_{\kappa} A^{i}=\left(S L S^{C}\left(\bar{x}_{i}, \bar{\xi}_{j}\right), d\right) \xrightarrow{\sim} A$

APPLICATION: $\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

$A=\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)=S\left(x_{1}, \ldots, x_{d}, \xi_{1}, \ldots, \xi_{d}\right)$
Action of $H_{*}\left(u E_{n}\right)$: free symmetric algebra and $\left\{x_{i}, \xi_{j}\right\}=\delta_{i j} 1$
\Longrightarrow quadratic-(linear-)constant presentation
Quadratization $q A=S\left(x_{i}, \xi_{j}\right)$ free symmetric algebra + zero bracket Koszul dual: $A^{i}=\left(q A^{i}, d, \theta\right)$

- $q A^{i}=S^{c}\left(\bar{x}_{i}, \bar{\xi}_{j}\right)$ cofree symmetric coalgebra + trivial cobracket
- $d=0$ (no linear terms in the relations)
- curvature: $\theta\left(\bar{x}_{i} \wedge \bar{\xi}_{j}\right)=-\delta_{i j}$, zero otherwise.
\Longrightarrow "small" resolution $Q_{A}:=\Omega_{\kappa} A^{i}=\left(S L S^{C}\left(\bar{x}_{i}, \bar{\xi}_{j}\right), d\right) \xrightarrow{\sim} A$
(If we had applied curved KD at the level of operads instead:
$\Omega_{\kappa} B_{\kappa} A \supset(\underbrace{S L}_{\text {cobar }} \underbrace{S^{C} L^{C}}_{\text {bar }} \underbrace{S\left(x_{i}, \xi_{j}\right.}_{A}), d)$, + resolution of the unit...)

APPLICATION: DERIVED ENVELOPING ALGEBRA

Operad P + P-algebra $A \Longrightarrow$ notion of A-modules

APPLICATION: DERIVED ENVELOPING ALGEBRA

Operad P + P-algebra $A \Longrightarrow$ notion of A-modules

Examples

$\mathrm{P}=$ Ass $\rightarrow(\mathrm{A}, \mathrm{A})$ bimodules; $\mathrm{P}=\mathrm{Com} \rightarrow \mathrm{A}$-modules; $\mathrm{P}=\mathrm{Lie} \rightarrow$ representations of the Lie algebra.

APPLICATION: DERIVED ENVELOPING ALGEBRA

Operad P + P-algebra $A \Longrightarrow$ notion of A-modules

Examples

$\mathrm{P}=$ Ass $\rightarrow(\mathrm{A}, \mathrm{A})$ bimodules; $\mathrm{P}=\mathrm{Com} \rightarrow \mathrm{A}$-modules; $\mathrm{P}=\mathrm{Lie} \rightarrow$ representations of the Lie algebra.
\exists an associative algebra $U_{P}(A)$ s.t. left $U_{P}(A)$-modules $=A$-modules

APPLICATION: DERIVED ENVELOPING ALGEBRA

Operad P + P-algebra $A \Longrightarrow$ notion of A-modules

Examples

$\mathrm{P}=$ Ass $\rightarrow(\mathrm{A}, \mathrm{A})$ bimodules; $\mathrm{P}=\mathrm{Com} \rightarrow \mathrm{A}$-modules; $\mathrm{P}=\mathrm{Lie} \rightarrow$ representations of the Lie algebra.
\exists an associative algebra $U_{p}(A)$ s.t. left $U_{p}(A)$-modules $=A$-modules

Proposition

For $A=\operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)$, the derived enveloping algebra $U_{H_{*}\left(u E_{n}\right)}^{\mathbb{L}}(A)$ is q.iso to the underived one + explicit description.

ApPLICATION: $\int_{M} \operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

We can also compute

$$
\int_{M} \operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right) \simeq \operatorname{LS}_{M} \circ_{H_{*}\left(u E_{n}\right)}\left(S L S^{c}\left(\bar{x}_{i}, \bar{\xi}_{j}\right), d\right)
$$

ApPLICATION: $\int_{M} \operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

We can also compute

$$
\int_{M} \operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right) \simeq \operatorname{LS}_{M} \circ_{H_{*}\left(u E_{n}\right)}\left(S L S^{c}\left(\bar{x}_{i}, \bar{\xi}_{j}\right), d\right)
$$

A bit of homological algebra + explicit description of LS_{M} :
Theorem (I. '18, see also Markarian '17, Döppenschmitt '18)
$\int_{M} \operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right) \simeq C_{*}^{C E}\left(\Omega^{n-*}(M) \otimes \mathbb{R}\left\langle 1, x_{i}, \xi_{j}\right\rangle\right) \simeq \mathbb{R}$.

ApPLICATION: $\int_{M} \operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

We can also compute

$$
\int_{M} \operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right) \simeq \operatorname{LS}_{M} \circ_{H_{*}\left(u E_{n}\right)}\left(S L S^{c}\left(\bar{x}_{i}, \bar{\xi}_{j}\right), d\right)
$$

A bit of homological algebra + explicit description of LS_{M} :
Theorem (I. '18, see also Markarian '17, Döppenschmitt '18)

$$
\int_{M} \operatorname{Poly}\left(T^{*} \mathbb{R}^{d}[1-n]\right) \simeq C_{*}^{C E}\left(\Omega^{n-*}(M) \otimes \mathbb{R}\left\langle 1, x_{i}, \xi_{j}\right\rangle\right) \simeq \mathbb{R}
$$

Intuition: quantum observable with values in $A \rightsquigarrow$ "expectation" lives in $\int_{M} A$, should be a number.

THANK YOU FOR YOUR ATTENTION!

These slides, links to papers: https://idrissi.eu

