CONFIGURATION SPACES AND GRAPH COMPLEXES

Najib Idrissi June 2018 @ University of Regina

M: manifold of dimension n

M: manifold of dimension n

 $\operatorname{Conf}_{k}(M) := \{(x_{1}, \dots, x_{k}) \in M^{k} \mid \forall i \neq j, \ x_{i} \neq x_{j}\}$

M: manifold of dimension n

• Braid groups

M: manifold of dimension n

 $\operatorname{Conf}_{k}(M) := \{(x_{1}, \ldots, x_{k}) \in M^{k} \mid \forall i \neq j, \ x_{i} \neq x_{j}\}$

- Braid groups
- Spaces of loops

M: manifold of dimension n

 $\operatorname{Conf}_k(M) \coloneqq \{(x_1, \ldots, x_k) \in M^k \mid \forall i \neq j, \ x_i \neq x_j\}$

- Braid groups
- Spaces of loops
- Moduli spaces of curves

M: manifold of dimension n

 $\operatorname{Conf}_k(M) \coloneqq \{(x_1, \ldots, x_k) \in M^k \mid \forall i \neq j, \ x_i \neq x_j\}$

- Braid groups
- Spaces of loops
- Moduli spaces of curves
- Physics: particles moving around

M: manifold of dimension n

 $\operatorname{Conf}_k(M) \coloneqq \{(x_1, \ldots, x_k) \in M^k \mid \forall i \neq j, \ x_i \neq x_j\}$

- Braid groups
- Spaces of loops
- Moduli spaces of curves
- Physics: particles moving around
- Robotics: motion planning

• $f, g: X \to Y$ are homotopic $(f \sim g)$ if $\exists H_t: X \to Y$, $H_0 = f$ and $H_1 = g$,

Crash course:

- $f, g: X \to Y$ are homotopic $(f \sim g)$ if $\exists H_t: X \to Y, H_0 = f$ and $H_1 = g$,
- f is a homotopy equivalence if f is invertible up to \sim ,

Crash course:

- $f, g: X \rightarrow Y$ are homotopic $(f \sim g)$ if $\exists H_t: X \rightarrow Y, H_0 = f$ and $H_1 = g$,
- + f is a homotopy equivalence if f is invertible up to \sim ,
- $X \sim Y$ (same homotopy type) if they are connected by homotopy equivalences.

Crash course:

- $f, g: X \to Y$ are homotopic $(f \sim g)$ if $\exists H_t: X \to Y, H_0 = f$ and $H_1 = g$,
- f is a homotopy equivalence if f is invertible up to \sim ,
- + $X \sim Y$ (same homotopy type) if they are connected by homotopy equivalences.

Real homotopy theory: up to homotopy and "modulo torsion".

Crash course:

- $f, g: X \to Y$ are homotopic $(f \sim g)$ if $\exists H_t: X \to Y, H_0 = f$ and $H_1 = g$,
- f is a homotopy equivalence if f is invertible up to \sim ,
- + $X \sim Y$ (same homotopy type) if they are connected by homotopy equivalences.

Real homotopy theory: up to homotopy and "modulo torsion". \rightarrow Sullivan's theory (1977): real homotopy type of *M* is determined by the algebra of de Rham forms $\Omega^*_{dR}(M)$.

Does the homotopy type of *M* determine the homotopy type of $\operatorname{Conf}_k(M)$? How to compute the homotopy type of $\operatorname{Conf}_k(M)$?

Does the homotopy type of *M* determine the homotopy type of $\operatorname{Conf}_k(M)$? How to compute the homotopy type of $\operatorname{Conf}_k(M)$?

Non-compact manifolds

Clearly false: $\operatorname{Conf}_2(\mathbb{R}) \not\sim \operatorname{Conf}_2(\{0\})$ even though $\mathbb{R} \sim \{0\}$.

Does the homotopy type of *M* determine the homotopy type of $\operatorname{Conf}_k(M)$? How to compute the homotopy type of $\operatorname{Conf}_k(M)$?

Non-compact manifolds

Clearly false: $\operatorname{Conf}_2(\mathbb{R}) \not\sim \operatorname{Conf}_2(\{0\})$ even though $\mathbb{R} \sim \{0\}$.

Closed manifolds

Longoni–Salvatore (2005): example of $M \sim N$ s.t. $\operatorname{Conf}_k(M) \not\sim \operatorname{Conf}_k(N)$,

Does the homotopy type of *M* determine the homotopy type of $\operatorname{Conf}_k(M)$? How to compute the homotopy type of $\operatorname{Conf}_k(M)$?

Non-compact manifolds

Clearly false: $\operatorname{Conf}_2(\mathbb{R}) \not\sim \operatorname{Conf}_2(\{0\})$ even though $\mathbb{R} \sim \{0\}$.

Closed manifolds

Longoni–Salvatore (2005): example of $M \sim N$ s.t. $\operatorname{Conf}_k(M) \not\sim \operatorname{Conf}_k(N)$, but not simply connected.

Does the homotopy type of *M* determine the homotopy type of $\operatorname{Conf}_k(M)$? How to compute the homotopy type of $\operatorname{Conf}_k(M)$?

Non-compact manifolds

Clearly false: $\operatorname{Conf}_2(\mathbb{R}) \not\sim \operatorname{Conf}_2(\{0\})$ even though $\mathbb{R} \sim \{0\}$.

Closed manifolds

Longoni–Salvatore (2005): example of $M \sim N$ s.t. $\operatorname{Conf}_k(M) \not\sim \operatorname{Conf}_k(N)$, but not simply connected.

Simply connected closed manifolds Homotopy invariance is still open! M is locally $\mathbb{R}^n \to \text{presentation of } H^*(\text{Conf}_k(\mathbb{R}^n))$ due to Arnold and Cohen:

- Generators: ω_{ij} , $1 \le i \ne j \le k$
- Relations:

$$\omega_{ij}^2 = \omega_{ji} - (-1)^n \omega_{ij} = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0$$

M is locally $\mathbb{R}^n \to \text{presentation of } H^*(\text{Conf}_k(\mathbb{R}^n))$ due to Arnold and Cohen:

- Generators: ω_{ij} , $1 \le i \ne j \le k$
- Relations:

$$\omega_{ij}^2 = \omega_{ji} - (-1)^n \omega_{ij} = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0$$

Theorem (Arnold 1969)

Formality: $H^*(\operatorname{Conf}_k(\mathbb{C})) \sim_{\mathbb{C}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_k(\mathbb{C})), \, \omega_{ij} \mapsto \mathrm{d}\log(z_i - z_j).$

M is locally $\mathbb{R}^n \to \text{presentation of } H^*(\text{Conf}_k(\mathbb{R}^n))$ due to Arnold and Cohen:

- Generators: ω_{ij} , $1 \le i \ne j \le k$
- Relations:

$$\omega_{ij}^2 = \omega_{ji} - (-1)^n \omega_{ij} = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0$$

Theorem (Arnold 1969)

Formality: $H^*(\operatorname{Conf}_k(\mathbb{C})) \sim_{\mathbb{C}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_k(\mathbb{C})), \omega_{ij} \mapsto \mathrm{d}\log(z_i - z_j).$

Theorem (Kontsevich 1999, Lambrechts–Volić 2014) $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) \sim_{\mathbb{R}} \Omega^*_{\mathrm{dR}}(\operatorname{Conf}_k(\mathbb{R}^n))$ for all k and all $n \geq 2$.

Kontsevich's graph complexes

[Kontsevich] **Graphs**_n(k):

KONTSEVICH'S GRAPH COMPLEXES

[Kontsevich] **Graphs**_n(k):

Theorem (Kontsevich 1999, Lambrechts-Volić 2014)

 $H^*(\operatorname{Conf}_k(\mathbb{R}^n);\mathbb{R}) \xleftarrow{\sim} \operatorname{Graphs}_n(k) \xrightarrow{\sim} \Omega^*(\operatorname{Conf}_k(\mathbb{R}^n))$

 $\omega_{ij} \longleftarrow (i) \longrightarrow \text{explicit representatives}$ $0 \longleftarrow \cdots \longrightarrow \text{"explicit" integrals}$

COMPACTIFICATION

Problem: $Conf_k$ is not compact – why does $\int converge$?

COMPACTIFICATION

Problem: Conf_k is not compact – why does \int converge? Fulton–MacPherson compactification $\operatorname{Conf}_k(M) \xrightarrow{\sim} \mathsf{FM}_M(k)$

ANIMATION #1

ANIMATION #2

We also have $\operatorname{Conf}_k(\mathbb{R}^n) \xrightarrow{\sim} \mathsf{FM}_n(k)$

We also have $\operatorname{Conf}_k(\mathbb{R}^n) \xrightarrow{\sim} \operatorname{Conf}_k(\mathbb{R}^n) / (\mathbb{R}^n \rtimes \mathbb{R}_{>0}) \xrightarrow{\sim} \mathsf{FM}_n(k)$

(+ normalization because \mathbb{R}^n is not compact)

THE LAMBRECHTS-STANLEY MODEL

M: compact manifold without boundary $A \sim \Omega(M)$: algebra which encodes the real homotopy type of *M*

THE LAMBRECHTS-STANLEY MODEL

M: compact manifold without boundary

 $A \sim \Omega(M)$: algebra which encodes the real homotopy type of M

 $\mathbf{G}_{\mathcal{A}}(k): \text{ conjectural model of } \operatorname{Conf}_{k}(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\longrightarrow := \{x_{i} = x_{j}\}$
M: compact manifold without boundary $A \sim \Omega(M)$: algebra which encodes the real homotopy type of *M*

 $G_A(k)$: conjectural model of $\operatorname{Conf}_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$

• "Generators": $A^{\otimes k}$ and the ω_{ii} of before

 $\searrow := \{x_i = x_i\}$

M: compact manifold without boundary $A \sim \Omega(M)$: algebra which encodes the real homotopy type of M

 $G_A(k)$: conjectural model of $Conf_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$

- "Generators": $A^{\otimes k}$ and the ω_{ij} of before
- Arnold relations + symmetry relations

 $\searrow := \{x_i = x_i\}$

M: compact manifold without boundary $A \sim \Omega(M)$: algebra which encodes the real homotopy type of *M*

 $G_A(k)$: conjectural model of $\operatorname{Conf}_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Longrightarrow := \{x_i = x_i\}$

- "Generators": $A^{\otimes k}$ and the ω_{ij} of before
- · Arnold relations + symmetry relations
- $d\omega_{ij} \rightarrow$ kills the dual of $[\Delta_{ij}]$.

M: compact manifold without boundary $A \sim \Omega(M)$: algebra which encodes the real homotopy type of *M*

 $G_A(k)$: conjectural model of $\operatorname{Conf}_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Longrightarrow := \{x_i = x_i\}$

- "Generators": $A^{\otimes k}$ and the ω_{ij} of before
- · Arnold relations + symmetry relations
- $d\omega_{ij} \rightarrow$ kills the dual of $[\Delta_{ij}]$.

Examples:

• $G_A(0) = \mathbb{R}$ is a model of $Conf_0(M) = \{\varnothing\}$ \checkmark

M: compact manifold without boundary $A \sim \Omega(M)$: algebra which encodes the real homotopy type of M

 $G_A(k)$: conjectural model of $\operatorname{Conf}_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Longrightarrow := \{x_i = x_i\}$

- "Generators": $A^{\otimes k}$ and the ω_{ij} of before
- · Arnold relations + symmetry relations
- $d\omega_{ij} \rightarrow$ kills the dual of $[\Delta_{ij}]$.

Examples:

- $G_A(0) = \mathbb{R}$ is a model of $Conf_0(M) = \{\varnothing\}$ \checkmark
- $G_A(1) = A$ is a model of $Conf_1(M) = M$ \checkmark

M: compact manifold without boundary $A \sim \Omega(M)$: algebra which encodes the real homotopy type of M

 $G_A(k)$: conjectural model of $\operatorname{Conf}_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Longrightarrow := \{x_i = x_i\}$

- "Generators": $A^{\otimes k}$ and the ω_{ij} of before
- Arnold relations + symmetry relations
- $d\omega_{ij} \rightarrow$ kills the dual of $[\Delta_{ij}]$.

Examples:

- $G_A(0) = \mathbb{R}$ is a model of $Conf_0(M) = \{\varnothing\}$ \checkmark
- $G_A(1) = A$ is a model of $Conf_1(M) = M$ \checkmark
- $G_A(2) \sim A^{\otimes 2}/(\Delta_A)$ should be a model of $\operatorname{Conf}_2(M) = M^2 \setminus \Delta_{\cdots}$

M: compact manifold without boundary $A \sim \Omega(M)$: algebra which encodes the real homotopy type of M

 $G_A(k)$: conjectural model of $\operatorname{Conf}_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$ $\Longrightarrow := \{x_i = x_i\}$

- "Generators": $A^{\otimes k}$ and the ω_{ij} of before
- Arnold relations + symmetry relations
- $d\omega_{ij} \rightarrow$ kills the dual of $[\Delta_{ij}]$.

Examples:

- $G_A(0) = \mathbb{R}$ is a model of $Conf_0(M) = \{\varnothing\}$ \checkmark
- $\cdot \ {\sf G}_{\sf A}(1) = {\sf A} \text{ is a model of } {\rm Conf}_1({\sf M}) = {\sf M} \quad \checkmark$
- + $G_A(2) \sim A^{\otimes 2}/(\Delta_A)$ should be a model of $Conf_2(M) = M^2 \setminus \Delta_{...}$
- $k \geq 3$: more complicated.

1978 [Cohen–Taylor] spectral sequence with $G_{H^*(M)}$ as input

- **1978** [Cohen–Taylor] spectral sequence with $G_{H^*(M)}$ as input
- ~1994 For smooth projective complex manifolds (\implies Kähler):

1978 [Cohen–Taylor] spectral sequence with $G_{H^*(M)}$ as input

~1994 For smooth projective complex manifolds (\implies Kähler):

• [Kříž] $\mathbf{G}_{H^*(M)}(k)$ is a model of $\operatorname{Conf}_k(M)$

- **1978** [Cohen–Taylor] spectral sequence with $G_{H^*(M)}$ as input
- ~1994 For smooth projective complex manifolds (\implies Kähler):
 - [Kříž] $\mathbf{G}_{H^*(M)}(k)$ is a model of $\operatorname{Conf}_k(M)$
 - [Totaro] the Cohen–Taylor SS collapses

1978 [Cohen–Taylor] spectral sequence with $G_{H^*(M)}$ as input

~1994 For smooth projective complex manifolds (\implies Kähler):

- [Kříž] $\mathbf{G}_{H^*(M)}(k)$ is a model of $\operatorname{Conf}_k(M)$
- [Totaro] the Cohen–Taylor SS collapses

2004 [Lambrechts–Stanley] model of $Conf_2(M)$ if $\pi_{\leq 2}(M) = 0$

- 1978 [Cohen–Taylor] spectral sequence with $G_{{\it H}^{\ast}({\it M})}$ as input
- ~1994 For smooth projective complex manifolds (\implies Kähler):
 - [Kříž] $\mathbf{G}_{H^*(M)}(k)$ is a model of $\operatorname{Conf}_k(M)$
 - [Totaro] the Cohen–Taylor SS collapses
- **2004** [Lambrechts–Stanley] model of $\operatorname{Conf}_2(M)$ if $\pi_{\leq 2}(M) = 0$
- ~2004 [Félix–Thomas, Berceanu–Markl–Papadima] related to a spectral sequence due to Bendersky–Gitler

- 1978 [Cohen–Taylor] spectral sequence with $G_{{\it H}^{\ast}({\it M})}$ as input
- ~1994 For smooth projective complex manifolds (\implies Kähler):
 - [Kříž] $\mathbf{G}_{H^*(M)}(k)$ is a model of $\operatorname{Conf}_k(M)$
 - [Totaro] the Cohen–Taylor SS collapses
- **2004** [Lambrechts–Stanley] model of $\operatorname{Conf}_2(M)$ if $\pi_{\leq 2}(M) = 0$
- ~2004 [Félix–Thomas, Berceanu–Markl–Papadima] related to a spectral sequence due to Bendersky–Gitler
 - **2008** [Lambrechts–Stanley] $H^{i}(G_{A}(k)) \cong_{\Sigma_{k}} H^{i}(\operatorname{Conf}_{k}(M))$

- 1978 [Cohen–Taylor] spectral sequence with $G_{{\it H}^{\ast}({\it M})}$ as input
- ~1994 For smooth projective complex manifolds (\implies Kähler):
 - [Kříž] $\mathbf{G}_{H^*(M)}(k)$ is a model of $\operatorname{Conf}_k(M)$
 - [Totaro] the Cohen–Taylor SS collapses
- **2004** [Lambrechts–Stanley] model of $\operatorname{Conf}_2(M)$ if $\pi_{\leq 2}(M) = 0$
- ~2004 [Félix–Thomas, Berceanu–Markl–Papadima] related to a spectral sequence due to Bendersky–Gitler
 - **2008** [Lambrechts–Stanley] $H^{i}(G_{A}(k)) \cong_{\Sigma_{k}} H^{i}(\operatorname{Conf}_{k}(M))$
 - **2015** [Cordova Bulens] model of $\operatorname{Conf}_2(M)$ if $\dim M = 2m$

FIRST PART OF THE THEOREM

Reuse the same basic idea as Kontsevich's proof:

Theorem (I. 2016)

Let *M* be a simply connected smooth closed manifold. Then $G_A(k)$ is a model over \mathbb{R} of $\operatorname{Conf}_k(M)$ for all $k \ge 0$.

Theorem (I. 2016)

Let *M* be a simply connected smooth closed manifold. Then $G_A(k)$ is a model over \mathbb{R} of $\operatorname{Conf}_k(M)$ for all $k \ge 0$.

Corollaries

 $M \sim_{\mathbb{R}} N \implies \operatorname{Conf}_k(M) \sim_{\mathbb{R}} \operatorname{Conf}_k(N)$ for all k.

Theorem (I. 2016)

Let *M* be a simply connected smooth closed manifold. Then $G_A(k)$ is a model over \mathbb{R} of $\operatorname{Conf}_k(M)$ for all $k \ge 0$.

Corollaries

 $M \sim_{\mathbb{R}} N \implies \operatorname{Conf}_k(M) \sim_{\mathbb{R}} \operatorname{Conf}_k(N)$ for all k.

We can "compute everything" (over \mathbb{R}) for $\operatorname{Conf}_k(M)$.

Theorem (I. 2016)

Let *M* be a simply connected smooth closed manifold. Then $G_A(k)$ is a model over \mathbb{R} of $\operatorname{Conf}_k(M)$ for all $k \ge 0$.

Corollaries

 $M \sim_{\mathbb{R}} N \implies \operatorname{Conf}_k(M) \sim_{\mathbb{R}} \operatorname{Conf}_k(N)$ for all k.

We can "compute everything" (over \mathbb{R}) for $\operatorname{Conf}_{k}(M)$.

Remark

 $\dim M \leq 3:$ only spheres (Poincaré conjecture) and G_A is already known to be a model...

Theorem (I. 2016)

Let *M* be a simply connected smooth closed manifold. Then $G_A(k)$ is a model over \mathbb{R} of $\operatorname{Conf}_k(M)$ for all $k \ge 0$.

Corollaries

 $M \sim_{\mathbb{R}} N \implies \operatorname{Conf}_k(M) \sim_{\mathbb{R}} \operatorname{Conf}_k(N)$ for all k.

We can "compute everything" (over \mathbb{R}) for $\operatorname{Conf}_{k}(M)$.

Remark

 $\dim M \le 3$: only spheres (Poincaré conjecture) and G_A is already known to be a model... but the proof above fails.

OPERADS

 $FM_n = {FM_n(k)}_{k \ge 0}$ is an operad: we can "insert" a configuration into another:

 $\mathsf{FM}_n(k) \times \mathsf{FM}_n(l) \xrightarrow{\circ_i} \mathsf{FM}_n(k+l-1), \quad 1 \le i \le k$

OPERADS

 $FM_n = {FM_n(k)}_{k \ge 0}$ is an operad: we can "insert" a configuration into another:

 $\mathsf{FM}_n(k) \times \mathsf{FM}_n(l) \xrightarrow{\circ_i} \mathsf{FM}_n(k+l-1), \quad 1 \le i \le k$

Remark

Equivalent in homotopy to the "little disks operad".

M parallelized \implies $FM_M = \{FM_M(k)\}_{k\geq 0}$ is a right FM_n -module: we can insert an infinitesimal configuration into a configuration of M:

 $\mathsf{FM}_{\mathcal{M}}(k) \times \mathsf{FM}_{\mathcal{n}}(l) \xrightarrow{\circ_i} \mathsf{FM}_{\mathcal{M}}(k+l-1), \quad 1 \le i \le k$

We can rewrite:

$$\mathbf{G}_{A}(k) = (A^{\otimes k} \otimes H^{*}(\mathbf{FM}_{n}(k)))/\text{relations}, d)$$

We can rewrite:

$$\mathbf{G}_{A}(k) = (A^{\otimes k} \otimes H^{*}(\mathbf{FM}_{n}(k))/\text{relations}, d)$$

By some abstract nonsense:

Proposition $\chi(M) = 0 \implies \mathbf{G}_A = {\mathbf{G}_A(k)}_{k>0}$ is a right $H^*(\mathbf{FM}_n)$ -comodule.

Theorem (I. 2016)

M: simply connected smooth closed manifold, $\dim {\rm M} \geq 4$

$$\begin{array}{cccc} \mathsf{G}_{A} & \longleftarrow & \mathsf{Graphs}_{R} & \dashrightarrow & \Omega^{*}_{\mathrm{PA}}(\mathsf{FM}_{M}) \\ & & \circlearrowleft^{\dagger} & & \circlearrowright^{\dagger} & & \circlearrowright^{\ddagger} \\ & & H^{*}(\mathsf{FM}_{n}) & \longleftarrow & \mathsf{Graphs}_{n} & \longrightarrow & \Omega^{*}_{\mathrm{PA}}(\mathsf{FM}_{n}) \\ & & \mathsf{f}\,\chi(M) = 0 \\ & & \mathsf{f}\,M \text{ is parallelized} & & & A & \xleftarrow{\sim} R \xrightarrow{\sim} \Omega^{*}_{\mathrm{PA}} \end{array}$$

Theorem (I. 2016)

M: simply connected smooth closed manifold, $\dim {\rm M} \geq 4$

$$\begin{array}{cccc} \mathsf{G}_{\mathsf{A}} & \longleftarrow & \mathsf{Graphs}_{\mathsf{R}} & \dashrightarrow & \Omega^*_{\mathrm{PA}}(\mathsf{FM}_{\mathsf{M}}) \\ & & \circlearrowright^{\dagger} & & \circlearrowright^{\dagger} & & \circlearrowright^{\ddagger} \\ & & H^*(\mathsf{FM}_n) & \longleftarrow & \mathsf{Graphs}_n & \longrightarrow & \Omega^*_{\mathrm{PA}}(\mathsf{FM}_n) \\ & &) = 0 \end{array}$$

[‡] If M is parallelized

 $A \xleftarrow{\sim} R \xrightarrow{\sim} \Omega^*_{\mathrm{PA}}(M)$

Upshot

[†] If $\chi(M)$

We have a model for each $\operatorname{Conf}_k(M)$ + richer structure if we consider all of them together.

Manifolds with boundary: homotopy invariance + generalization of Lambrechts–Stanley model (+ more!) under good conditions.

Manifolds with boundary: homotopy invariance + generalization of Lambrechts–Stanley model (+ more!) under good conditions.

Allows to compute $Conf_k$ "by induction".

Manifolds with boundary: homotopy invariance + generalization of Lambrechts–Stanley model (+ more!) under good conditions.

Allows to compute $Conf_k$ "by induction".

Work in progress j/w Campos, Ducoulombier, Willwacher Model for framed configurations of points: get a module structure even if the manifold is not parallelized.

Manifolds with boundary: homotopy invariance + generalization of Lambrechts–Stanley model (+ more!) under good conditions.

Allows to compute $Conf_k$ "by induction".

Work in progress j/w Campos, Ducoulombier, Willwacher Model for framed configurations of points: get a module structure even if the manifold is not parallelized.

Allows to compute spaces of embeddings of manifolds and/or factorization homology for more general manifolds (see next slide).

The Lambrechts-Stanley model is explicit and "small"

 \implies computations possible

The Lambrechts-Stanley model is explicit and "small"

- \implies computations possible
 - Embedding spaces of manifolds.

The Lambrechts-Stanley model is explicit and "small"

- \implies computations possible
 - Embedding spaces of manifolds. Schematically, $\operatorname{Emb}(M, N) \sim \operatorname{Mor}_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}^{h}(\operatorname{Conf}_{\bullet}(M), \operatorname{Conf}_{\bullet}(N))$ [Boavida–Weiss, Turchin].
The Lambrechts-Stanley model is explicit and "small"

- \implies computations possible
 - Embedding spaces of manifolds. Schematically, $\operatorname{Emb}(M, N) \sim \operatorname{Mor}_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}^{h}(\operatorname{Conf}_{\bullet}(M), \operatorname{Conf}_{\bullet}(N))$ [Boavida–Weiss, Turchin].
 - Factorization homology (kind of homology where \otimes replaces \oplus). Schematically, $\int_M A \sim \operatorname{Conf}_{\bullet}(M) \otimes^h_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)} A$ [Francis].

The Lambrechts–Stanley model is explicit and "small"

- \implies computations possible
 - Embedding spaces of manifolds. Schematically, $\operatorname{Emb}(M, N) \sim \operatorname{Mor}_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}^{h}(\operatorname{Conf}_{\bullet}(M), \operatorname{Conf}_{\bullet}(N))$ [Boavida–Weiss, Turchin].
 - Factorization homology (kind of homology where \otimes replaces \oplus). Schematically, $\int_M A \sim \operatorname{Conf}_{\bullet}(M) \otimes^h_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)} A$ [Francis].

Theorem (I. 2018, cf. also Markarian 2017)

M parallelized simply connected smooth manifold (dim \geq 4), $A = Poly(T^* \mathbb{R}^d [1 - n])$ The Lambrechts–Stanley model is explicit and "small"

- \implies computations possible
 - Embedding spaces of manifolds. Schematically, $\operatorname{Emb}(M, N) \sim \operatorname{Mor}_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)}^{h}(\operatorname{Conf}_{\bullet}(M), \operatorname{Conf}_{\bullet}(N))$ [Boavida–Weiss, Turchin].
 - Factorization homology (kind of homology where \otimes replaces \oplus). Schematically, $\int_M A \sim \operatorname{Conf}_{\bullet}(M) \otimes^h_{\operatorname{Conf}_{\bullet}(\mathbb{R}^n)} A$ [Francis].

Theorem (I. 2018, cf. also Markarian 2017)

 $\begin{array}{l} \text{M parallelized simply connected smooth manifold (dim \geq 4),} \\ \text{A} = \operatorname{Poly}(T^* \mathbb{R}^d [1-n]) \implies \int_M A \sim_{\mathbb{R}} \mathbb{R}. \end{array}$

THANK YOU FOR YOUR ATTENTION!

These slides, links to papers: https://idrissi.eu