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Configuration Spaces

M: manifold of dimension n

Confk(M) := {(x1, . . . , xk) ∈ Mk | ∀i 6= j, xi 6= xj}
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• Braid groups
• Spaces of loops
• Moduli spaces of curves
• Physics: particles moving around
• Robotics: motion planning
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General context: Homotopy Theory

Homotopy Theory: study of topological spaces up to homotopy, using
algebraic invariants (homology, cohomology, homotopy groups…)

Crash course:

• f , g : X → Y are homotopic (f ∼ g) if ∃Ht : X → Y , H0 = f and H1 = g,

• f is a homotopy equivalence if f is invertible up to ∼,

• X ∼ Y (same homotopy type) if they are connected by homotopy equivalences.

Real homotopy theory: up to homotopy and “modulo torsion”.
→ Sullivan’s theory (1977): real homotopy type of M is determined by
the algebra of de Rham forms Ω∗

dR(M).
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An open problem

Question
Does the homotopy type of M determine the homotopy type of
Confk(M)? How to compute the homotopy type of Confk(M)?

Non-compact manifolds
Clearly false: Conf2(R) 6∼ Conf2({0}) even though R ∼ {0}.

Closed manifolds
Longoni–Salvatore (2005): example of M ∼ N s.t. Confk(M) 6∼ Confk(N),
but not simply connected.

Simply connected closed manifolds
Homotopy invariance is still open!
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Configuration in Euclidean spaces

M is locally Rn → presentation of H∗(Confk(Rn)) due to
Arnold and Cohen:
• Generators: ωij, 1 ≤ i 6= j ≤ k
• Relations:

ω2
ij = ωji − (−1)nωij = ωijωjk + ωjkωki + ωkiωij = 0

Theorem (Arnold 1969)
Formality: H∗(Confk(C)) ∼C Ω∗

dR(Confk(C)), ωij 7→ d log(zi − zj).

Theorem (Kontsevich 1999, Lambrechts–Volić 2014)
H∗(Confk(Rn)) ∼R Ω∗

dR(Confk(Rn)) for all k and all n ≥ 2.
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Kontsevich’s graph complexes

[Kontsevich] Graphsn(k):

1

2 3

d7−→ ±
1

2 3
ω12ω23

±
1

2 3
ω23ω31

±
1

2 3
ω31ω12

Theorem (Kontsevich 1999, Lambrechts–Volić 2014)

H∗(Confk(Rn);R) Graphsn(k) Ω∗(Confk(Rn))

ωij i j explicit representatives

0 “explicit” integrals

∼ ∼

5/22



Kontsevich’s graph complexes

[Kontsevich] Graphsn(k):

1

2 3

d7−→ ±
1

2 3
ω12ω23

±
1

2 3
ω23ω31

±
1

2 3
ω31ω12

Theorem (Kontsevich 1999, Lambrechts–Volić 2014)

H∗(Confk(Rn);R) Graphsn(k) Ω∗(Confk(Rn))

ωij i j explicit representatives

0 “explicit” integrals

∼ ∼

5/22



Compactification

Problem: Confk is not compact – why does
∫
converge?

Fulton–MacPherson compactification Confk(M)
∼
↪−→ FMM(k)

1
7
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3
4

5 6
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Animation #1
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Animation #1
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Animation #2
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Animation #2
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Animation #3
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Animation #3
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Compactification of Confk(Rn)

We also have Confk(Rn)
∼−→ FMn(k)

1

2

3
45

67
8

(+ normalization because Rn is not compact)
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The Lambrechts–Stanley model

M: compact manifold without boundary
A ∼ Ω(M): algebra which encodes the real homotopy type of M

GA(k): conjectural model of Confk(M) = M×k \
⋃
i6=j∆ij

:= {xi = xj}

• “Generators”: A⊗k and the ωij of before
• Arnold relations + symmetry relations
• dωij → kills the dual of [∆ij].

Examples:

• GA(0) = R is a model of Conf0(M) = {∅} X

• GA(1) = A is a model of Conf1(M) = M X

• GA(2) ∼ A⊗2/(∆A) should be a model of Conf2(M) = M2 \∆…
• k ≥ 3: more complicated.
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Brief history of GA

1969 [Arnold, Cohen] H∗(Confk(Rn)) = GH∗(Dn)(k)

1978 [Cohen–Taylor] spectral sequence with GH∗(M) as input
~1994 For smooth projective complex manifolds (=⇒ Kähler):

• [Kříž] GH∗(M)(k) is a model of Confk(M)
• [Totaro] the Cohen–Taylor SS collapses

2004 [Lambrechts–Stanley] model of Conf2(M) if π≤2(M) = 0

~2004 [Félix–Thomas, Berceanu–Markl–Papadima] related to a spectral
sequence due to Bendersky–Gitler

2008 [Lambrechts–Stanley] Hi(GA(k)) ∼=Σk-Vect Hi(Confk(M))
2015 [Cordova Bulens] model of Conf2(M) if dimM = 2m
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First part of the theorem

Reuse the same basic idea as Kontsevich’s proof:

Theorem (I. 2016)
Let M be a simply connected smooth closed manifold. Then GA(k) is a
model over R of Confk(M) for all k ≥ 0.

Corollaries
M ∼R N =⇒ Confk(M) ∼R Confk(N) for all k.

We can “compute everything” (over R) for Confk(M).

Remark
dimM ≤ 3: only spheres (Poincaré conjecture) and GA is already
known to be a model… but the proof above fails.
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Operads

FMn = {FMn(k)}k≥0 is an operad: we can “insert” a configuration into
another:

1 2
◦2

1 2
= 1

2 3

FMn(k)× FMn(l)
◦i−→ FMn(k+ l− 1), 1 ≤ i ≤ k

Remark
Equivalent in homotopy to the “little disks operad”.
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Modules over operads

M parallelized =⇒ FMM = {FMM(k)}k≥0 is a right FMn-module: we can
insert an infinitesimal configuration into a configuration of M:

1

2

3

◦3 1
2

3 = 1

2

3

4
5

FMM(k)× FMn(l)
◦i−→ FMM(k+ l− 1), 1 ≤ i ≤ k
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Cohomology of FMn and coaction on GA

We can rewrite:

GA(k) = (A⊗k ⊗ H∗(FMn(k))/relations,d)

By some abstract nonsense:

Proposition
χ(M) = 0 =⇒ GA = {GA(k)}k≥0 is a right H∗(FMn)-comodule.

19/22



Cohomology of FMn and coaction on GA

We can rewrite:

GA(k) = (A⊗k ⊗ H∗(FMn(k))/relations,d)

By some abstract nonsense:

Proposition
χ(M) = 0 =⇒ GA = {GA(k)}k≥0 is a right H∗(FMn)-comodule.

19/22



Complete version of the theorem

Theorem (I. 2016)
M: simply connected smooth closed manifold, dimM ≥ 4

GA GraphsR Ω∗
PA(FMM)

	† 	† 	‡

H∗(FMn) Graphsn Ω∗
PA(FMn)

∼ ∼

∼ ∼

† If χ(M) = 0
‡ If M is parallelized A ∼←− R ∼−→ Ω∗

PA(M)

Upshot
We have a model for each Confk(M) + richer structure if we consider
all of them together.
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Generalizations

Theorem (Campos–I.–Lambrechts–Willwacher 2018)
Manifolds with boundary: homotopy invariance + generalization of
Lambrechts–Stanley model (+ more!) under good conditions.

Allows to compute Confk “by induction”.

Work in progress j/w Campos, Ducoulombier, Willwacher
Model for framed configurations of points: get a module structure
even if the manifold is not parallelized.

Allows to compute spaces of embeddings of manifolds and/or
factorization homology for more general manifolds (see next slide).
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Applications

The Lambrechts–Stanley model is explicit and “small”
=⇒ computations possible

• Embedding spaces of manifolds.

Schematically, Emb(M,N) ∼ MorhConf•(Rn)(Conf•(M),Conf•(N))
[Boavida–Weiss, Turchin].

• Factorization homology (kind of homology where ⊗ replaces ⊕).
Schematically,

∫
M A ∼ Conf•(M)⊗h

Conf•(Rn) A [Francis].

Theorem (I. 2018, cf. also Markarian 2017)
M parallelized simply connected smooth manifold (dim ≥ 4),
A = Poly(T∗Rd[1− n])

=⇒
∫
M A ∼R R.

22/22



Applications

The Lambrechts–Stanley model is explicit and “small”
=⇒ computations possible

• Embedding spaces of manifolds.

Schematically, Emb(M,N) ∼ MorhConf•(Rn)(Conf•(M),Conf•(N))
[Boavida–Weiss, Turchin].

• Factorization homology (kind of homology where ⊗ replaces ⊕).
Schematically,

∫
M A ∼ Conf•(M)⊗h

Conf•(Rn) A [Francis].

Theorem (I. 2018, cf. also Markarian 2017)
M parallelized simply connected smooth manifold (dim ≥ 4),
A = Poly(T∗Rd[1− n])

=⇒
∫
M A ∼R R.

22/22



Applications

The Lambrechts–Stanley model is explicit and “small”
=⇒ computations possible

• Embedding spaces of manifolds.
Schematically, Emb(M,N) ∼ MorhConf•(Rn)(Conf•(M),Conf•(N))
[Boavida–Weiss, Turchin].

• Factorization homology (kind of homology where ⊗ replaces ⊕).
Schematically,

∫
M A ∼ Conf•(M)⊗h

Conf•(Rn) A [Francis].

Theorem (I. 2018, cf. also Markarian 2017)
M parallelized simply connected smooth manifold (dim ≥ 4),
A = Poly(T∗Rd[1− n])

=⇒
∫
M A ∼R R.

22/22



Applications

The Lambrechts–Stanley model is explicit and “small”
=⇒ computations possible

• Embedding spaces of manifolds.
Schematically, Emb(M,N) ∼ MorhConf•(Rn)(Conf•(M),Conf•(N))
[Boavida–Weiss, Turchin].

• Factorization homology (kind of homology where ⊗ replaces ⊕).
Schematically,

∫
M A ∼ Conf•(M)⊗h

Conf•(Rn) A [Francis].

Theorem (I. 2018, cf. also Markarian 2017)
M parallelized simply connected smooth manifold (dim ≥ 4),
A = Poly(T∗Rd[1− n])

=⇒
∫
M A ∼R R.

22/22



Applications

The Lambrechts–Stanley model is explicit and “small”
=⇒ computations possible

• Embedding spaces of manifolds.
Schematically, Emb(M,N) ∼ MorhConf•(Rn)(Conf•(M),Conf•(N))
[Boavida–Weiss, Turchin].

• Factorization homology (kind of homology where ⊗ replaces ⊕).
Schematically,

∫
M A ∼ Conf•(M)⊗h

Conf•(Rn) A [Francis].

Theorem (I. 2018, cf. also Markarian 2017)
M parallelized simply connected smooth manifold (dim ≥ 4),
A = Poly(T∗Rd[1− n])

=⇒
∫
M A ∼R R.

22/22



Applications

The Lambrechts–Stanley model is explicit and “small”
=⇒ computations possible

• Embedding spaces of manifolds.
Schematically, Emb(M,N) ∼ MorhConf•(Rn)(Conf•(M),Conf•(N))
[Boavida–Weiss, Turchin].

• Factorization homology (kind of homology where ⊗ replaces ⊕).
Schematically,

∫
M A ∼ Conf•(M)⊗h

Conf•(Rn) A [Francis].

Theorem (I. 2018, cf. also Markarian 2017)
M parallelized simply connected smooth manifold (dim ≥ 4),
A = Poly(T∗Rd[1− n]) =⇒

∫
M A ∼R R.

22/22



Thank you for your attention!

These slides, links to papers: https://idrissi.eu
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