CONFIGURATION SPACES OF MANIFOLDS WITH BOUNDARY

Najib Idrissi j/w R. Campos, P. Lambrechts, T. Willwacher Graph Complexes, Configuration Spaces and Manifold Calculus @ UBC

RECOLLECTIONS

RECOLLECTIONS: CONFIGURATION SPACES

$$\operatorname{Conf}_k(M) \coloneqq \{(x_1, \dots, x_k) \in M^k \mid \forall i \neq j, \ x_i \neq x_j\}$$

RECOLLECTIONS: CONFIGURATION SPACES

$$\operatorname{Conf}_k(M) \coloneqq \{(x_1, \ldots, x_k) \in M^k \mid \forall i \neq j, \ x_i \neq x_j\}$$

Question

Does the homotopy type of *M* determine the homotopy type of $\operatorname{Conf}_k(M)$? How to compute the homotopy type of $\operatorname{Conf}_k(M)$?

RECOLLECTIONS: $\operatorname{Conf}_k(\mathbb{R}^n)$

Theorem (Arnold, Cohen)

$$H^{*}(\operatorname{Conf}_{k}(\mathbb{R}^{n})) = S(\omega_{ij})/(\omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij}, \omega_{ij}^{2}, \omega_{ji} - \pm \omega_{ij})$$

Theorem (Arnold, Cohen)

 $H^{*}(\operatorname{Conf}_{k}(\mathbb{R}^{n})) = S(\omega_{ij})/(\omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij}, \, \omega_{ji}^{2}, \, \omega_{ji} - \pm \omega_{ij})$

Compactify $\operatorname{Conf}_k(\mathbb{R}^n)$: $\implies \operatorname{FM}_n(k)$ is an operad (\simeq little disks operad)

Theorem (Arnold, Cohen)

 $H^{*}(\operatorname{Conf}_{k}(\mathbb{R}^{n})) = S(\omega_{ij})/(\omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij}, \, \omega_{ji}^{2}, \, \omega_{ji} - \pm \omega_{ij})$

Compactify $\operatorname{Conf}_{k}(\mathbb{R}^{n})$:

- \implies FM_n(k) is an operad (\simeq little disks operad)
- \implies $H^*(FM_n)$ is a Hopf cooperad

Theorem (Arnold, Cohen)

 $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = S(\omega_{ij})/(\omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij}, \, \omega_{ji}^2, \, \omega_{ji} - \pm \omega_{ij})$

- Compactify $\operatorname{Conf}_k(\mathbb{R}^n)$:
- \implies FM_n(k) is an operad (\simeq little disks operad)
- \implies $H^*(FM_n)$ is a Hopf cooperad

Kontsevich: Hopf cooperad Graphs_n

Theorem (Arnold, Cohen)

 $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = S(\omega_{ij})/(\omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij}, \, \omega_{ji}^2, \, \omega_{ji} - \pm \omega_{ij})$

- Compactify $\operatorname{Conf}_k(\mathbb{R}^n)$:
- \implies FM_n(k) is an operad (\simeq little disks operad)
- \implies $H^*(FM_n)$ is a Hopf cooperad

Kontsevich: Hopf cooperad Graphs_n

Theorem (Kontsevich 1999, Lambrechts–Volić 2014) $H^*(FM_n) \xleftarrow{\sim} Graphs_n \xrightarrow{\sim} \Omega^*_{PA}(FM_n)$ as Hopf cooperads.

Recollections: $\operatorname{Conf}_{k}(M)$ for M closed

M: smooth, simply connected, closed *n*-manifold

- \rightarrow compactification FM_M of $\operatorname{Conf}_{\bullet}(M)$
- \rightarrow module over FM_n if M is parallelized

Recollections: $\operatorname{Conf}_{k}(M)$ for M closed

M: smooth, simply connected, closed n-manifold

- \rightarrow compactification FM_M of $Conf_{\bullet}(M)$
- \rightarrow module over FM_n if M is parallelized

Theorem (Campos–Willwacher, I.)

 $A = S(\tilde{H}^*(M))$ or a cofibrant model of $M \implies A$ -decorated graphs $\mathbf{Graphs}_A \simeq \Omega^*_{\mathrm{PA}}(\mathbf{FM}_M),$

compatible with $FM_M \curvearrowleft FM_n$ if M is parallelized. Explicit if dim $M \ge 4$.

Recollections: $\operatorname{Conf}_{k}(M)$ for M closed

M: smooth, simply connected, closed n-manifold

- \rightarrow compactification FM_M of $Conf_{\bullet}(M)$
- \rightarrow module over FM_n if M is parallelized

Theorem (Campos–Willwacher, I.) $A = S(\tilde{H}^*(M))$ or a cofibrant model of $M \implies A$ -decorated graphs $Graphs_A \simeq \Omega^*_{PA}(FM_M),$ compatible with $FM_M \curvearrowleft FM_n$ if M is parallelized. Explicit if dim M > 4.

Corollary

For smooth closed simply connected manifolds,

 $M \simeq_{\mathbb{R}} N \implies \operatorname{Conf}_{k}(M) \simeq_{\mathbb{R}} \operatorname{Conf}_{k}(N).$

Generalizations for manifolds with boundary in three directions:

1. graph model for the Swiss-Cheese action;

Generalizations for manifolds with boundary in three directions:

- 1. graph model for the Swiss-Cheese action;
- 2. graph model for the action of $\operatorname{Conf}_{\bullet}(\partial M \times \mathbb{R})$ on $\operatorname{Conf}_{\bullet}(M)$;

Generalizations for manifolds with boundary in three directions:

- 1. graph model for the Swiss-Cheese action;
- 2. graph model for the action of $\operatorname{Conf}_{\bullet}(\partial M \times \mathbb{R})$ on $\operatorname{Conf}_{\bullet}(M)$;
- 3. the Lambrechts–Stanley model.

Generalizations for manifolds with boundary in three directions:

- 1. graph model for the Swiss-Cheese action;
- 2. graph model for the action of $\operatorname{Conf}_{\bullet}(\partial M \times \mathbb{R})$ on $\operatorname{Conf}_{\bullet}(M)$;
- 3. the Lambrechts–Stanley model.

General technique

Degree counting \implies vanishing of $H^*(\text{certain graph complex})$ in the right degree \implies homotopy invariance.

Generalizations for manifolds with boundary in three directions:

- 1. graph model for the Swiss-Cheese action;
- 2. graph model for the action of $\operatorname{Conf}_{\bullet}(\partial M \times \mathbb{R})$ on $\operatorname{Conf}_{\bullet}(M)$;
- 3. the Lambrechts-Stanley model.

General technique

Degree counting \implies vanishing of $H^*(\text{certain graph complex})$ in the right degree \implies homotopy invariance.

Remark: we do everything in the fiberwise setting, so the operadic comodule structures exist in all cases. For simplicity I only state the parallelized case.

SWISS CHEESE

SWISS-CHEESE OPERAD

Locally, a manifold with boundary is \mathbb{H}^n

SWISS-CHEESE OPERAD

Locally, a manifold with boundary is $\mathbb{H}^n \implies$ Swiss-Cheese operad:

SWISS-CHEESE OPERAD

Locally, a manifold with boundary is $\mathbb{H}^n \implies$ Swiss-Cheese operad:

Compactify $\operatorname{Conf}_{\bullet,\bullet}(\mathbb{H}^n)/\mathbb{R}^{n-1} \rtimes \mathbb{R}_{>0} \implies \mathsf{SFM}_n$

The Swiss-Cheese operad is not formal: $H^*(SC_n) \simeq \Omega^*(SC_n)$.

The Swiss-Cheese operad is not formal: $H^*(SC_n) \simeq \Omega^*(SC_n)$.

Willwacher (2015): Swiss-Cheese graphs

· aerial and terrestrial vertices, oriented edges;

The Swiss-Cheese operad is not formal: $H^*(SC_n) \not\simeq \Omega^*(SC_n)$.

Willwacher (2015): Swiss-Cheese graphs

- · aerial and terrestrial vertices, oriented edges;
- differential: edge contraction + subgraph contraction with non-explicit coefficients;

The Swiss-Cheese operad is not formal: $H^*(SC_n) \simeq \Omega^*(SC_n)$.

Willwacher (2015): Swiss-Cheese graphs

- · aerial and terrestrial vertices, oriented edges;
- differential: edge contraction + subgraph contraction with non-explicit coefficients;
- cooperad: subgraph contraction.

The Swiss-Cheese operad is not formal: $H^*(SC_n) \simeq \Omega^*(SC_n)$.

Willwacher (2015): Swiss-Cheese graphs

- · aerial and terrestrial vertices, oriented edges;
- differential: edge contraction + subgraph contraction with non-explicit coefficients;
- cooperad: subgraph contraction.

Theorem (Willwacher 2015)

 $\mathsf{SGraphs}_n$ is a model for $\mathsf{SFM}_n = \overline{\mathrm{Conf}_{\bullet,\bullet}(\mathbb{H}^n)} \simeq \mathsf{SC}_n$.

SWISS-CHEESE CONFIGURATIONS

 $A = S(\tilde{H}^*(M) \oplus H^*(M, \partial M))$ and $A_{\partial} = S(\tilde{H}^*(\partial M)) \implies \text{bicolored graphs:}$

SWISS-CHEESE CONFIGURATIONS

 $A = S(\tilde{H}^*(M) \oplus H^*(M, \partial M))$ and $A_{\partial} = S(\tilde{H}^*(\partial M)) \implies \text{bicolored graphs:}$

Theorem (Campos-I.-Lambrechts-Willwacher)

 $SGraphs_{A,A_{\partial}}$ is a model of $SFM_{M} = \overline{Conf_{\bullet,\bullet}(M)}$, compatible with the action of $SGraphs_{n} \simeq \Omega_{PA}^{*}(SFM_{n})$ is M is parallelized.

SWISS-CHEESE CONFIGURATIONS

 $A = S(\tilde{H}^*(M) \oplus H^*(M, \partial M))$ and $A_{\partial} = S(\tilde{H}^*(\partial M)) \implies \text{bicolored graphs:}$

Theorem (Campos-I.-Lambrechts-Willwacher)

 $SGraphs_{A,A_{\partial}}$ is a model of $SFM_{M} = \overline{Conf_{\bullet,\bullet}(M)}$, compatible with the action of $SGraphs_{n} \simeq \Omega^{*}_{PA}(SFM_{n})$ is M is parallelized.

Corollary

For smooth, simply connected, compact manifolds with boundary of dimension ≥ 5 , the real homotopy type of SFM_M (incl. SFM_n-module structure) only depends on the real homotopy type of $(M, \partial M)$.

Gluing

Gluing

 $\operatorname{Conf}_{\bullet}(\partial M \times \mathbb{R})$ is a homotopy algebra, $\operatorname{Conf}_{\bullet}(M)$ is a homotopy module:

GLUING

 $\operatorname{Conf}_{\bullet}(\partial M \times \mathbb{R})$ is a homotopy algebra, $\operatorname{Conf}_{\bullet}(M)$ is a homotopy module:

 \rightarrow useful to get the homotopy type of Conf_k "inductively":

 $\operatorname{Conf}_{\bullet}(M \cup_{\partial M} M') = \operatorname{Conf}_{\bullet}(M) \otimes_{\operatorname{Conf}_{\bullet}(\partial M)}^{\mathbb{L}} \operatorname{Conf}_{\bullet}(M').$

GLUING

 $\operatorname{Conf}_{\bullet}(\partial M \times \mathbb{R})$ is a homotopy algebra, $\operatorname{Conf}_{\bullet}(M)$ is a homotopy module:

 \rightarrow useful to get the homotopy type of Conf_k "inductively":

$$\operatorname{Conf}_{\bullet}(M \cup_{\partial M} M') = \operatorname{Conf}_{\bullet}(M) \otimes_{\operatorname{Conf}_{\bullet}(\partial M)}^{\mathbb{L}} \operatorname{Conf}_{\bullet}(M').$$

We can compactify configuration spaces and strictify this structure:

$$\operatorname{\mathsf{aFM}}_{\partial \mathsf{M}}(k) = \overline{\operatorname{Conf}_k(\partial \mathsf{M} \times \mathbb{R})/\mathbb{R}_{>0}}, \qquad \operatorname{\mathsf{mFM}}_{\mathsf{M}}(k) = \overline{\operatorname{Conf}_k(\mathsf{M})}.$$

For $A_{\partial} = S(\tilde{H}(M)) \implies$ coalgebra in **Graphs**_n-comodules **aGraphs**_{A_{\partial}}:

• coalgebra: graph cutting

For $A_{\partial} = S(\tilde{H}(M)) \implies$ coalgebra in **Graphs**_n-comodules **aGraphs**_{A_{\partial}}:

• coalgebra: graph cutting

• **Graphs**_n-comodule: subgraph contraction.

For $A_{\partial} = S(\tilde{H}(M)) \implies$ coalgebra in **Graphs**_n-comodules **aGraphs**_{A_{\partial}}:

• coalgebra: graph cutting

• **Graphs**_n-comodule: subgraph contraction.

Theorem (Campos–I.–Lambrechts–Willwacher) aGraphs_{A_{∂}} $\simeq \Omega^*_{PA}(aFM_{\partial M})$ with all the structure.
For $A_{\partial} = S(\tilde{H}(M)) \implies$ coalgebra in **Graphs**_n-comodules **aGraphs**_{A_{\partial}}:

• coalgebra: graph cutting

• **Graphs**_n-comodule: subgraph contraction.

Theorem (Campos–I.–Lambrechts–Willwacher)

 $aGraphs_{A_\partial}\simeq \Omega^*_{\rm PA}(aFM_{\partial M})$ with all the structure.

Corollary

For a closed smooth (n - 1)-manifold $N = \partial M$, the real homotopy type of N determines the real homotopy type of \mathbf{aFM}_N .

CONFIGURATIONS IN THE INTERIOR

 $mGraphs_A$: $aGraphs_{A_{\partial}}$ -comodule in Hopf $Graphs_n$ -comodules given by A-labeled graphs

• **aGraphs**_{A_{∂}}-comodule: graph cutting + restrict labels to A_{∂} ;

 $mGraphs_A$: $aGraphs_{A_\partial}$ -comodule in Hopf $Graphs_n$ -comodules given by A-labeled graphs

- **aGraphs**_{A_{∂}}-comodule: graph cutting + restrict labels to A_{∂} ;
- **Graphs**_n-comodule: subgraph contraction;

 $mGraphs_A$: $aGraphs_{A_\partial}$ -comodule in Hopf $Graphs_n$ -comodules given by A-labeled graphs

- **aGraphs**_{A_{∂}}-comodule: graph cutting + restrict labels to A_{∂} ;
- **Graphs**_n-comodule: subgraph contraction;
- differential: edge contraction + internal vertices go to $\infty.$

 $mGraphs_A$: $aGraphs_{A_{\partial}}$ -comodule in Hopf $Graphs_n$ -comodules given by A-labeled graphs

- $aGraphs_{A_{\partial}}$ -comodule: graph cutting + restrict labels to A_{∂} ;
- **Graphs**_n-comodule: subgraph contraction;
- differential: edge contraction + internal vertices go to ∞ .

Theorem (Campos-I.-Lambrechts-Willwacher)

 $\mathbf{mGraphs}_{A} \simeq \Omega^{*}_{\mathrm{PA}}(\mathbf{mFM}_{M})$ with all the structure.

 $mGraphs_A$: $aGraphs_{A_{\partial}}$ -comodule in Hopf $Graphs_n$ -comodules given by A-labeled graphs

- $aGraphs_{A_{\partial}}$ -comodule: graph cutting + restrict labels to A_{∂} ;
- **Graphs**_n-comodule: subgraph contraction;
- differential: edge contraction + internal vertices go to ∞ .

Theorem (Campos-I.-Lambrechts-Willwacher)

 $\textbf{mGraphs}_{\text{A}} \simeq \Omega^*_{\rm PA}(\textbf{mFM}_{\text{M}})$ with all the structure.

Corollary

For a smooth compact manifold with boundary M of dimension ≥ 4 , the real homotopy type of $(M, \partial M)$ determines the real homotopy type of $\mathsf{mFM}_{M} = \overline{\mathrm{Conf}_{\bullet}(M)}$.

Goal

Obtain a smaller model for configuration spaces.

Goal

Obtain a smaller model for configuration spaces.

Poincaré duality CDGA (P, ε) :

- P: connected finite-type CDGA;
- $\varepsilon: \mathbb{P}^n \to \mathbb{R}$ such that $\varepsilon \circ d = 0$;
- $P^k \otimes P^{n-k} \to \mathbb{R}, x \otimes y \mapsto \varepsilon(xy)$ is non-degenerate $\forall k \in \mathbb{Z}$.

Goal

Obtain a smaller model for configuration spaces.

Poincaré duality CDGA (P, ε):

- P: connected finite-type CDGA;
- $\varepsilon: \mathbb{P}^n \to \mathbb{R}$ such that $\varepsilon \circ d = 0$;
- $P^k \otimes P^{n-k} \to \mathbb{R}, x \otimes y \mapsto \varepsilon(xy)$ is non-degenerate $\forall k \in \mathbb{Z}$.

Theorem (Lambrechts-Stanley 2008)

 $\begin{array}{l} \mbox{M: simply connected + closed} \ \Longrightarrow \ \exists (P, \varepsilon) \ \mbox{Poincar\'e} \ \mbox{duality model:} \\ P \xleftarrow{\sim} A \xrightarrow{\sim} \Omega^*(M). \end{array}$

Lambrechts–Stanley model (Intuition: $Conf_k(M) = M^k \setminus \bigcup_{i \neq j} \{x_i = x_j\}$)

$$\mathbf{G}_{P}(k) := \left(\frac{P^{\otimes k} \otimes H^{*}(\operatorname{Conf}_{k}(\mathbb{R}^{n}))}{p_{i}^{*}(x)\omega_{ij} = p_{j}^{*}(x)\omega_{ij}}, d\omega_{ij} = p_{ij}^{*}(\Delta_{P})\right),$$

Lambrechts–Stanley model (Intuition: $Conf_k(M) = M^k \setminus \bigcup_{i \neq j} \{x_i = x_j\}$)

$$\mathbf{G}_{P}(k) := \left(\frac{P^{\otimes k} \otimes H^{*}(\operatorname{Conf}_{k}(\mathbb{R}^{n}))}{p_{i}^{*}(x)\omega_{ij} = p_{j}^{*}(x)\omega_{ij}}, d\omega_{ij} = p_{ij}^{*}(\Delta_{P})\right),$$

Examples: $G_P(0) = \mathbb{R} \checkmark$,

Lambrechts–Stanley model (Intuition: $Conf_k(M) = M^k \setminus \bigcup_{i \neq j} \{x_i = x_j\}$)

$$\mathbf{G}_{P}(k) := \left(\frac{P^{\otimes k} \otimes H^{*}(\operatorname{Conf}_{k}(\mathbb{R}^{n}))}{p_{i}^{*}(x)\omega_{ij} = p_{j}^{*}(x)\omega_{ij}}, d\omega_{ij} = p_{ij}^{*}(\Delta_{P})\right),$$

Examples: $\mathbf{G}_{P}(0) = \mathbb{R} \checkmark$, $\mathbf{G}_{P}(1) = P \checkmark$,

Lambrechts–Stanley model (Intuition: $Conf_k(M) = M^k \setminus \bigcup_{i \neq j} \{x_i = x_j\}$)

$$\mathbf{G}_{P}(k) := \left(\frac{P^{\otimes k} \otimes H^{*}(\operatorname{Conf}_{k}(\mathbb{R}^{n}))}{p_{i}^{*}(x)\omega_{ij} = p_{j}^{*}(x)\omega_{ij}}, d\omega_{ij} = p_{ij}^{*}(\Delta_{P})\right),$$

Examples: $\mathbf{G}_{P}(0) = \mathbb{R} \checkmark$, $\mathbf{G}_{P}(1) = P \checkmark$, $\mathbf{G}_{P}(2) \simeq P^{\otimes 2}/(\Delta_{P})$.

Lambrechts–Stanley model (Intuition: $Conf_k(M) = M^k \setminus \bigcup_{i \neq j} \{x_i = x_j\}$)

$$\mathbf{G}_{\mathsf{P}}(k) \coloneqq \left(\frac{\mathsf{P}^{\otimes k} \otimes \mathsf{H}^*(\mathrm{Conf}_k(\mathbb{R}^n))}{p_i^*(x)\omega_{ij} = p_j^*(x)\omega_{ij}}, d\omega_{ij} = p_{ij}^*(\Delta_{\mathsf{P}})\right),$$

Examples: $\mathbf{G}_{\mathsf{P}}(0) = \mathbb{R} \checkmark, \mathbf{G}_{\mathsf{P}}(1) = \mathsf{P} \checkmark, \mathbf{G}_{\mathsf{P}}(2) \simeq \mathsf{P}^{\otimes 2}/(\Delta_{\mathsf{P}}).$

Theorem (Lambrechts–Stanley 2008) $H^{i}(\mathbf{G}_{P}(k)) \cong_{\Sigma_{k}} H^{i}(\operatorname{Conf}_{k}(M)).$

The Lambrechts–Stanley Model

Lambrechts–Stanley model (Intuition: $Conf_k(M) = M^k \setminus \bigcup_{i \neq j} \{x_i = x_j\}$)

$$\mathbf{G}_{\mathsf{P}}(k) \coloneqq \left(\frac{\mathsf{P}^{\otimes k} \otimes \mathsf{H}^*(\mathrm{Conf}_k(\mathbb{R}^n))}{p_i^*(x)\omega_{ij} = p_j^*(x)\omega_{ij}}, d\omega_{ij} = p_{ij}^*(\Delta_{\mathsf{P}})\right),$$

Examples: $\mathbf{G}_{\mathsf{P}}(0) = \mathbb{R} \checkmark, \mathbf{G}_{\mathsf{P}}(1) = \mathsf{P} \checkmark, \mathbf{G}_{\mathsf{P}}(2) \simeq \mathsf{P}^{\otimes 2}/(\Delta_{\mathsf{P}}).$

Theorem (Lambrechts–Stanley 2008) $H^{i}(\mathbf{G}_{P}(k)) \cong_{\Sigma_{k}} H^{i}(\operatorname{Conf}_{k}(M)).$

Theorem (I.)

M smooth, closed, simply connected manifold, dim $M \ge 4 \implies$ $\mathbf{G}_P(k) \xleftarrow{\sim} \mathbf{Graphs}_A \xrightarrow{\sim} \Omega^*_{\mathrm{PA}}(\mathbf{FM}_M),$ compatible with $H^*(\mathbf{FM}_n) \xleftarrow{\sim} \mathbf{Graphs}_n \xrightarrow{\sim} \Omega^*_{\mathrm{PA}}(\mathbf{FM}_n)$ if parallelized.

$\partial M \neq \varnothing \implies H^*(M)$ is paired with $H^{n-*}(M, \partial M)$

 $\partial M \neq \varnothing \implies H^*(M)$ is paired with $H^{n-*}(M, \partial M)$ Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial})$:

• $(B_{\partial}, \varepsilon_{\partial})$: Poincaré duality CDGA dim. n-1; (models $\partial M, \int_{\partial M}$)

 $\partial M \neq \varnothing \implies H^*(M)$ is paired with $H^{n-*}(M, \partial M)$ Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial})$:

• $(B_{\partial}, \varepsilon_{\partial})$: Poincaré duality CDGA dim. n - 1;

(models ∂M , $\int_{\partial M}$)

• B: fin.type connected CDGA;

(models M)

 $\partial M \neq \varnothing \implies H^*(M)$ is paired with $H^{n-*}(M, \partial M)$ Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial})$:

• $(B_{\partial}, \varepsilon_{\partial})$: Poincaré duality CDGA dim. n - 1;

- (models ∂M, ∫_{∂M})
 - (models M)
- (models $\partial M \hookrightarrow M$)

B: fin.type connected CDGA;
λ : B → B_∂: surjective morphism ;

 $\partial M \neq \varnothing \implies H^*(M)$ is paired with $H^{n-*}(M, \partial M)$ Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial})$:

- $(B_{\partial}, \varepsilon_{\partial})$: Poincaré duality CDGA dim. n 1;
- B: fin.type connected CDGA;
- $\lambda : B \twoheadrightarrow B_{\partial}$: surjective morphism ;

•
$$\varepsilon: B^n \to \mathbb{R}$$
 s.t. $\varepsilon(dy) = \varepsilon_{\partial}(\lambda(y));$

(models ∂M , $\int_{\partial M}$)

(models M)

(models $\partial M \hookrightarrow M$)

(models $\int_{M}(-)$ & Stokes)

 $\partial M \neq \varnothing \implies H^*(M)$ is paired with $H^{n-*}(M, \partial M)$ Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial})$:

- $(B_{\partial}, \varepsilon_{\partial})$: Poincaré duality CDGA dim. n 1;
- B: fin.type connected CDGA; (models M)
- $\lambda : B \twoheadrightarrow B_\partial$: surjective morphism ;

$$\cdot \ \varepsilon : B^n \to \mathbb{R} \text{ s.t. } \varepsilon(dy) = \varepsilon_{\partial}(\lambda(y)); \qquad (\text{models } f_{M}(-) \&$$

• $\mathcal{K} := \ker \lambda \implies B \xrightarrow{\theta} \mathcal{K}^{\vee}[-n], \ b \mapsto \varepsilon(b \cdot -) \text{ is a surj. q.iso. } (\mathcal{K} \simeq \Omega^*(M, \partial M))$

(models ∂M , $\int_{\partial M}$)

(models $\partial M \hookrightarrow M$)

Stokes)

 $\partial M \neq \varnothing \implies H^*(M)$ is paired with $H^{n-*}(M, \partial M)$ Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial})$:

- $(B_{\partial}, \varepsilon_{\partial})$: Poincaré duality CDGA dim. n 1;
- B: fin.type connected CDGA; (models M)
- $\lambda: B \twoheadrightarrow B_{\partial}$: surjective morphism ;
- $\cdot \ \varepsilon : B^n \to \mathbb{R} \text{ s.t. } \varepsilon(dy) = \varepsilon_{\partial}(\lambda(y)); \qquad (\text{models } \int_{M}(-) \& \text{ Stokes})$
- $K := \ker \lambda \implies B \xrightarrow{\theta} K^{\vee}[-n], \ b \mapsto \varepsilon(b \cdot -) \text{ is a surj. q.iso. } (K \simeq \Omega^*(M, \partial M))$
- \implies $P \coloneqq B/\ker\theta$ is a model of *M*;

(models ∂M , $\int_{\partial M}$)

(models $\partial M \hookrightarrow M$)

 $\partial M \neq \varnothing \implies H^*(M)$ is paired with $H^{n-*}(M, \partial M)$ Poincaré–Lefschetz duality pair $(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial})$:

- $(B_{\partial}, \varepsilon_{\partial})$: Poincaré duality CDGA dim. n 1;
- B: fin.type connected CDGA; (models M)
- $\lambda : B \twoheadrightarrow B_{\partial}$: surjective morphism ;
- $\cdot \ \varepsilon : B^n \to \mathbb{R} \text{ s.t. } \varepsilon(dy) = \varepsilon_{\partial}(\lambda(y)); \qquad (\text{models } \int_{M}(-) \& \text{ Stokes})$
- $K := \ker \lambda \implies B \xrightarrow{\theta} K^{\vee}[-n], \ b \mapsto \varepsilon(b \cdot -) \text{ is a surj. q.iso. } (K \simeq \Omega^*(M, \partial M))$

 $\implies P := B/\ker\theta \text{ is a model of } M;$ $\implies P^k \otimes K^{n-k} \to \mathbb{R}, x \otimes y \mapsto \varepsilon(xy) \text{ is non-degenerate for all } k.$

(models ∂M , $\int_{\partial M}$)

(models $\partial M \hookrightarrow M$)

Example

If $M = N \setminus D^n$ with N closed,

Example

If $M = N \setminus D^n$ with N closed, let \tilde{P} : Poincaré duality model of $N \Longrightarrow$ $B = (\tilde{P} \oplus \mathbb{R}v_{n-1}, dv = \operatorname{vol}_{\tilde{P}}) \twoheadrightarrow B_{\partial} = H^*(S^{n-1}) = (\mathbb{R} \oplus \mathbb{R}v_{n-1}, d = 0)$ and $P = \tilde{P}/\operatorname{vol}_{\tilde{P}}$ is paired with $K = \operatorname{ker}(\tilde{P} \to \mathbb{R})$.

Example

If $M = N \setminus D^n$ with N closed, let \tilde{P} : Poincaré duality model of $N \Longrightarrow$ $B = (\tilde{P} \oplus \mathbb{R}v_{n-1}, dv = \operatorname{vol}_{\tilde{P}}) \twoheadrightarrow B_{\partial} = H^*(S^{n-1}) = (\mathbb{R} \oplus \mathbb{R}v_{n-1}, d = 0)$

and $P = \tilde{P}/\operatorname{vol}_{\tilde{P}}$ is paired with $K = \ker(\tilde{P} \to \mathbb{R})$.

Proposition

If M and ∂M are simply connected and dim $M \ge 7$, then $(M, \partial M)$ has a PLD model.

Example

If $M = N \setminus D^n$ with N closed, let \tilde{P} : Poincaré duality model of $N \Longrightarrow$ $B = (\tilde{P} \oplus \mathbb{R}v_{n-1}, dv = \operatorname{vol}_{\tilde{P}}) \twoheadrightarrow B_{\partial} = H^*(S^{n-1}) = (\mathbb{R} \oplus \mathbb{R}v_{n-1}, d = 0)$

and $P = \tilde{P}/\operatorname{vol}_{\tilde{P}}$ is paired with $K = \ker(\tilde{P} \to \mathbb{R})$.

Proposition

If M and ∂M are simply connected and dim $M \ge 7$, then $(M, \partial M)$ has a PLD model.

Also true if *M* has a "surjective pretty model", cf. results of Cordova Bulens–Lambrechts–Stanley.

Example

If $M = N \setminus D^n$ with N closed, let \tilde{P} : Poincaré duality model of $N \Longrightarrow$ $B = (\tilde{P} \oplus \mathbb{R}v_{n-1}, dv = \operatorname{vol}_{\tilde{P}}) \twoheadrightarrow B_{\partial} = H^*(S^{n-1}) = (\mathbb{R} \oplus \mathbb{R}v_{n-1}, d = 0)$

and $P = \tilde{P}/\operatorname{vol}_{\tilde{P}}$ is paired with $K = \ker(\tilde{P} \to \mathbb{R})$.

Proposition

If M and ∂M are simply connected and dim $M \ge 7$, then $(M, \partial M)$ has a PLD model.

Also true if *M* has a "surjective pretty model", cf. results of Cordova Bulens–Lambrechts–Stanley.

Remark

We can use PLD pairs instead of $S(\tilde{H}(M) \oplus H(M, \partial M))$ and $S(\tilde{H}(\partial M))$ in all the graph models.

(B, B_{∂}) PLD model, $P = B/ \ker \theta \implies$ similar definition of G_P

(B, B_{∂}) PLD model, $P = B/ \ker \theta \implies$ similar definition of G_P

Theorem (Campos–I.–Lambrechts–Willwacher) $\dim H^i(\operatorname{Conf}_k(\mathcal{M})) = \dim H^i(\mathbf{G}_P(k)).$

 (B, B_{∂}) PLD model, $P = B/ \ker \theta \implies$ similar definition of G_P

Theorem (Campos–I.–Lambrechts–Willwacher) $\dim H^i(\operatorname{Conf}_k(M)) = \dim H^i(G_P(k)).$

Problem: $G_P(k)$ is not an actual model of $Conf_k(M)$.

 (B, B_{∂}) PLD model, $P = B/ \ker \theta \implies$ similar definition of G_P

Theorem (Campos–I.–Lambrechts–Willwacher) $\dim H^i(\operatorname{Conf}_R(M)) = \dim H^i(\mathbf{G}_P(k)).$

Problem: $\mathbf{G}_{P}(k)$ is not an actual model of $\operatorname{Conf}_{k}(M)$.

Motivation

 $\mathsf{M}=\mathsf{S}^1\times\mathbb{R}\cong\mathbb{R}^2\setminus\{0\}\implies\operatorname{Conf}_2(\mathsf{M})\simeq\operatorname{Conf}_3(\mathbb{R}^2)$

 (B, B_{∂}) PLD model, $P = B/ \ker \theta \implies$ similar definition of G_P

Theorem (Campos–I.–Lambrechts–Willwacher) $\dim H^i(\operatorname{Conf}_k(M)) = \dim H^i(G_P(k)).$

Problem: $\mathbf{G}_P(k)$ is not an actual model of $\operatorname{Conf}_k(M)$.

Motivation

$$M = S^1 \times \mathbb{R} \cong \mathbb{R}^2 \setminus \{0\} \implies \operatorname{Conf}_2(M) \simeq \operatorname{Conf}_3(\mathbb{R}^2)$$

Then $P = H^*(M) = \mathbb{R} \oplus \mathbb{R}\eta$.

- in $G_P(2)$: $(1 \otimes \eta)\omega_{12} = (\eta \otimes 1)\omega_{12}$.
- in Conf₃(\mathbb{R}^2) (Arnold): $(1 \otimes \eta)\omega_{12} = (\eta \otimes 1)\omega_{12} \pm (\eta \otimes \eta)$.

We define a "perturbed" model $\tilde{G}_P(k)$: comes from the extra piece of the differential where an internal vertex can "go to infinity".

We define a "perturbed" model $\tilde{G}_P(k)$: comes from the extra piece of the differential where an internal vertex can "go to infinity".

Proposition

Isomorphism of dg-modules $G_P(k) \cong \tilde{G}_P(k)$.
We define a "perturbed" model $\tilde{G}_P(k)$: comes from the extra piece of the differential where an internal vertex can "go to infinity".

Proposition

Isomorphism of dg-modules $\mathbf{G}_P(k) \cong \widetilde{\mathbf{G}}_P(k)$.

Theorem (Campos-I.-Lambrechts-Willwacher)

For a smooth compact simply connected manifold M with $\dim M \ge 7$ and simply connected boundary, $\tilde{\mathbf{G}}_{P}(k) \simeq \Omega^*_{\mathrm{PA}}(\mathsf{mFM}_{M}(k))$, compatible with FM_n -action. We define a "perturbed" model $\tilde{G}_P(k)$: comes from the extra piece of the differential where an internal vertex can "go to infinity".

Proposition

Isomorphism of dg-modules $\mathbf{G}_P(k) \cong \widetilde{\mathbf{G}}_P(k)$.

Theorem (Campos-I.-Lambrechts-Willwacher)

For a smooth compact simply connected manifold M with $\dim M \ge 7$ and simply connected boundary, $\tilde{\mathbf{G}}_P(k) \simeq \Omega^*_{\mathrm{PA}}(\mathsf{mFM}_M(k))$, compatible with FM_n -action.

For dim $M \leq 6$, we can define $\tilde{G}_{H^*(M)}(k) = \text{mGraphs}_{H^*(M)}(k)/(\text{int. vtx.})$, still a model but less explicit if dim $M \leq 3$.

THANK YOU FOR YOUR ATTENTION!

These slides, links to papers: https://idrissi.eu