Configuration Spaces of Manifolds with Boundary

Najib Idrissi j/w R. Campos, P. Lambrechts, T. Willwacher Graph Complexes, Configuration Spaces and Manifold Calculus @ UBC

ETHzürich

European Research Council
Elablishod by tea Furegtan Commission

Recollections

Recollections: Configuration Spaces

$\operatorname{Conf}_{k}(M):=\left\{\left(x_{1}, \ldots, x_{k}\right) \in M^{k} \mid \forall i \neq j, x_{i} \neq x_{j}\right\}$

Recollections: Configuration Spaces

$$
\operatorname{Conf}_{k}(M):=\left\{\left(x_{1}, \ldots, x_{k}\right) \in M^{k} \mid \forall i \neq j, x_{i} \neq x_{j}\right\}
$$

Question

Does the homotopy type of M determine the homotopy type of $\operatorname{Conf}_{k}(M)$? How to compute the homotopy type of $\operatorname{Conf}_{k}(M)$?

Recollections: $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$

Theorem (Arnold, Cohen)
$H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)=S\left(\omega_{i j}\right) /\left(\omega_{i j} \omega_{j k}+\omega_{j k} \omega_{k i}+\omega_{k i} \omega_{i j}, \omega_{i j}^{2}, \omega_{j i}- \pm \omega_{i j}\right)$

Recollections: $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$

Theorem (Arnold, Cohen)
$H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)=S\left(\omega_{i j}\right) /\left(\omega_{i j} \omega_{j k}+\omega_{j k} \omega_{k i}+\omega_{k i} \omega_{i j}, \omega_{i j}^{2}, \omega_{j i}- \pm \omega_{i j}\right)$

Compactify $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$:
$\Longrightarrow \mathrm{FM}_{n}(k)$ is an operad (\simeq little disks operad)

Recollections: $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$

Theorem (Arnold, Cohen)
$H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)=S\left(\omega_{i j}\right) /\left(\omega_{i j} \omega_{j k}+\omega_{j k} \omega_{k i}+\omega_{k i} \omega_{i j}, \omega_{i j}^{2}, \omega_{j i}- \pm \omega_{i j}\right)$

Compactify $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$:
$\Longrightarrow \mathrm{FM}_{n}(k)$ is an operad (\simeq little disks operad)
$\Longrightarrow H^{*}\left(F M_{n}\right)$ is a Hopf cooperad

Recollections: $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$

Theorem (Arnold, Cohen)
$H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)=S\left(\omega_{i j}\right) /\left(\omega_{i j} \omega_{j k}+\omega_{j k} \omega_{k i}+\omega_{k i} \omega_{i j}, \omega_{i j}^{2}, \omega_{j i}- \pm \omega_{i j}\right)$

Compactify $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$:
$\Longrightarrow \mathrm{FM}_{n}(k)$ is an operad (\simeq little disks operad)
$\Longrightarrow H^{*}\left(F M_{n}\right)$ is a Hopf cooperad

Kontsevich: Hopf cooperad Graphs n

Recollections: $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$

Theorem (Arnold, Cohen)
$H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)=S\left(\omega_{i j}\right) /\left(\omega_{i j} \omega_{j k}+\omega_{j k} \omega_{k i}+\omega_{k i} \omega_{i j}, \omega_{i j}^{2}, \omega_{j i}- \pm \omega_{i j}\right)$

Compactify $\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)$:
$\Longrightarrow \mathrm{FM}_{n}(k)$ is an operad (\simeq little disks operad)
$\Longrightarrow H^{*}\left(\mathrm{FM}_{n}\right)$ is a Hopf cooperad

Kontsevich: Hopf cooperad Graphs n

Theorem (Kontsevich 1999, Lambrechts-Volić 2014) $H^{*}\left(\mathrm{FM}_{n}\right) \underset{\sim}{\sim}$ Graphs $_{n} \xrightarrow{\sim} \Omega_{\mathrm{PA}}^{*}\left(\mathrm{FM}_{n}\right)$ as Hopf cooperads.

Recollections: $\operatorname{Conf}_{k}(M)$ FOR M CLOSED

M: smooth, simply connected, closed n-manifold
\rightarrow compactification $\mathrm{FM}_{\text {M }}$ of Conf. $^{(M)}$
\rightarrow module over FM_{n} if M is parallelized

ReCOLLECTIONS: $\operatorname{Conf}_{k}(M)$ FOR M CLOSED

M: smooth, simply connected, closed n-manifold
\rightarrow compactification FM $_{M}$ of Conf. (M)
\rightarrow module over FM_{n} if M is parallelized

Theorem (Campos-Willwacher, I.)
$A=S\left(\tilde{H}^{*}(M)\right)$ or a cofibrant model of $M \Longrightarrow$ A-decorated graphs Graphs $_{\mathrm{A}} \simeq \Omega_{\mathrm{PA}}^{*}\left(\mathrm{FM}_{\mathrm{M}}\right)$,
compatible with $\mathrm{FM}_{M} \curvearrowleft \mathrm{FM}_{n}$ if M is parallelized. Explicit if $\operatorname{dim} M \geq 4$.

ReCOLLECTIONS: $\operatorname{Conf}_{k}(M)$ FOR M CLOSED

M: smooth, simply connected, closed n-manifold
\rightarrow compactification FM_{M} of Conf. $^{(M)}$
\rightarrow module over FM_{n} if M is parallelized

Theorem (Campos-Willwacher, I.)

$A=S\left(\tilde{H}^{*}(M)\right)$ or a cofibrant model of $M \Longrightarrow$ A-decorated graphs Graphs $_{A} \simeq \Omega_{\mathrm{PA}}^{*}\left(\mathrm{FM}_{\mathrm{M}}\right)$,
compatible with $\mathrm{FM}_{M} \curvearrowleft \mathrm{FM}_{n}$ if M is parallelized. Explicit if $\operatorname{dim} M \geq 4$.

Corollary

For smooth closed simply connected manifolds,

$$
M \simeq_{\mathbb{R}} N \Longrightarrow \operatorname{Conf}_{k}(M) \simeq_{\mathbb{R}} \operatorname{Conf}_{k}(N)
$$

GoAL

Goal

Generalizations for manifolds with boundary in three directions:

1. graph model for the Swiss-Cheese action;

GoAL

Goal

Generalizations for manifolds with boundary in three directions:

1. graph model for the Swiss-Cheese action;
2. graph model for the action of Conf• $(\partial M \times \mathbb{R})$ on Conf. (M);

GoAL

Goal

Generalizations for manifolds with boundary in three directions:

1. graph model for the Swiss-Cheese action;
2. graph model for the action of Conf. $(\partial M \times \mathbb{R})$ on Conf. (M);
3. the Lambrechts-Stanley model.

GoAL

Goal

Generalizations for manifolds with boundary in three directions:

1. graph model for the Swiss-Cheese action;
2. graph model for the action of $\operatorname{Conf}_{\bullet}(\partial M \times \mathbb{R})$ on Conf. (M);
3. the Lambrechts-Stanley model.

General technique

Degree counting \Longrightarrow vanishing of H^{*} (certain graph complex) in the right degree \Longrightarrow homotopy invariance.

GoAL

Goal

Generalizations for manifolds with boundary in three directions:

1. graph model for the Swiss-Cheese action;
2. graph model for the action of $\operatorname{Conf}_{\bullet}(\partial M \times \mathbb{R})$ on Conf. (M);
3. the Lambrechts-Stanley model.

General technique

Degree counting \Longrightarrow vanishing of H^{*} (certain graph complex) in the right degree \Longrightarrow homotopy invariance.

Remark: we do everything in the fiberwise setting, so the operadic comodule structures exist in all cases. For simplicity I only state the parallelized case.

Swiss Cheese

SwISS-CHEESE OPERAD

Locally, a manifold with boundary is \mathbb{H}^{n}

SwISS-CHEESE OPERAD

Locally, a manifold with boundary is $\mathbb{H}^{n} \Longrightarrow$ Swiss-Cheese operad:

SwISS-CHEESE OPERAD

Locally, a manifold with boundary is $\mathbb{H}^{n} \Longrightarrow$ Swiss-Cheese operad:

Compactify Conf $\bullet \bullet\left(\mathbb{H}^{n}\right) / \mathbb{R}^{n-1} \rtimes \mathbb{R}_{>0} \Longrightarrow \mathrm{SFM}_{n}$

Model for the Swiss-Cheese operad

Theorem (Livernet 2015, Willwacher 2017)
The Swiss-Cheese operad is not formal: $H^{*}\left(\mathrm{SC}_{n}\right) \nsucceq \Omega^{*}\left(\mathrm{SC}_{n}\right)$.

Model for the Swiss-Cheese operad

Theorem (Livernet 2015, Willwacher 2017)
The Swiss-Cheese operad is not formal: $H^{*}\left(\mathrm{SC}_{n}\right) \not \nsucceq \Omega^{*}\left(\mathrm{SC}_{n}\right)$.
Willwacher (2015): Swiss-Cheese graphs

- aerial and terrestrial vertices, oriented edges;

Model for the Swiss-Cheese operad

Theorem (Livernet 2015, Willwacher 2017)
The Swiss-Cheese operad is not formal: $H^{*}\left(\mathrm{SC}_{n}\right) \not \nsucceq \Omega^{*}\left(\mathrm{SC}_{n}\right)$.
Willwacher (2015): Swiss-Cheese graphs

- aerial and terrestrial vertices, oriented edges;
- differential: edge contraction + subgraph contraction with non-explicit coefficients;

Model for the Swiss-Cheese operad

Theorem (Livernet 2015, Willwacher 2017)
The Swiss-Cheese operad is not formal: $H^{*}\left(\mathrm{SC}_{n}\right) \not \nsimeq \Omega^{*}\left(\mathrm{SC}_{n}\right)$.
Willwacher (2015): Swiss-Cheese graphs

- aerial and terrestrial vertices, oriented edges;
- differential: edge contraction + subgraph contraction with non-explicit coefficients;

- cooperad: subgraph contraction.

Model for the Swiss-Cheese operad

Theorem (Livernet 2015, Willwacher 2017)
The Swiss-Cheese operad is not formal: $H^{*}\left(\mathrm{SC}_{n}\right) \nsucceq \Omega^{*}\left(\mathrm{SC}_{n}\right)$.
Willwacher (2015): Swiss-Cheese graphs

- aerial and terrestrial vertices, oriented edges;
- differential: edge contraction + subgraph contraction with non-explicit coefficients;

- cooperad: subgraph contraction.

Theorem (Willwacher 2015)
SGraphs $_{n}$ is a model for SFM $_{n}=\overline{\operatorname{Conf}_{\bullet \bullet}\left(\mathbb{H}^{n}\right)} \simeq$ SC $_{n}$.

Swiss-Cheese configurations

$A=S\left(\tilde{H}^{*}(M) \oplus H^{*}(M, \partial M)\right)$ and $A_{\partial}=S\left(\tilde{H}^{*}(\partial M)\right) \Longrightarrow$ bicolored graphs:

SWISS-CHEESE CONFIGURATIONS

$A=S\left(\tilde{H}^{*}(M) \oplus H^{*}(M, \partial M)\right)$ and $A_{\partial}=S\left(\tilde{H}^{*}(\partial M)\right) \Longrightarrow$ bicolored graphs:

Theorem (Campos-I.-Lambrechts-Willwacher)
SGraphs $_{A, A_{\partial}}$ is a model of SFM $_{M}=\overline{\text { Conf }_{\bullet \bullet}(M)}$, compatible with the action of $\mathrm{SGraph}_{n} \simeq \Omega_{\mathrm{PA}}^{*}\left(\mathrm{SFM}_{n}\right)$ is M is parallelized.

Swiss-Cheese configurations

$A=S\left(\tilde{H}^{*}(M) \oplus H^{*}(M, \partial M)\right)$ and $A_{\partial}=S\left(\tilde{H}^{*}(\partial M)\right) \Longrightarrow$ bicolored graphs:

Theorem (Campos-I.-Lambrechts-Willwacher)

SGraphs $_{A, A_{\partial}}$ is a model of $\mathrm{SFM}_{M}=\overline{\operatorname{Conf}_{\bullet, \bullet}(M)}$, compatible with the action of $\mathrm{SGraphs}_{n} \simeq \Omega_{\mathrm{PA}}^{*}\left(\mathrm{SFM}_{n}\right)$ is M is parallelized.

Corollary

For smooth, simply connected, compact manifolds with boundary of dimension ≥ 5, the real homotopy type of SFM $_{M}$ (incl. SFM M_{n}-module structure) only depends on the real homotopy type of ($M, \partial M$).

Gluing

Gluing

$\operatorname{Conf}_{\bullet}(\partial M \times \mathbb{R})$ is a homotopy algebra, $\operatorname{Conf}_{\bullet}(M)$ is a homotopy module:

Gluing

Conf. $(\partial M \times \mathbb{R})$ is a homotopy algebra, $\operatorname{Conf}_{\bullet}(M)$ is a homotopy module:

\rightarrow useful to get the homotopy type of Conf ${ }_{k}$ "inductively":

$$
\operatorname{Conf}_{\bullet}\left(M \cup_{\partial M} M^{\prime}\right)=\operatorname{Conf}_{\bullet}(M) \otimes_{\operatorname{Conf} \bullet}^{\mathbb{I}}(\partial M) \operatorname{Conf}_{\bullet}\left(M^{\prime}\right)
$$

Gluing

$\operatorname{Conf}_{\bullet}(\partial M \times \mathbb{R})$ is a homotopy algebra, $\operatorname{Conf}_{\bullet}(M)$ is a homotopy module:

\rightarrow useful to get the homotopy type of Conf ${ }_{k}$ "inductively":

$$
\operatorname{Conf}_{\bullet}\left(M \cup_{\partial M} M^{\prime}\right)=\operatorname{Conf}_{\bullet}(M) \otimes_{\operatorname{Conf}_{\bullet}(\partial M)}^{\mathbb{L}} \operatorname{Conf}_{\bullet}\left(M^{\prime}\right)
$$

We can compactify configuration spaces and strictify this structure:

$$
\operatorname{aFM}_{\partial M}(k)=\overline{\operatorname{Conf}_{k}(\partial M \times \mathbb{R}) / \mathbb{R}_{>0}}, \quad m \mathrm{mM}_{M}(k)=\overline{\operatorname{Conf}_{k}(M)}
$$

CONFIGURATIONS IN A COLLAR

For $A_{\partial}=S(\tilde{H}(M)) \Longrightarrow$ coalgebra in Graphs ${ }_{n}$-comodules aGraphs $A_{A_{\partial}}$:

- coalgebra: graph cutting

CONFIGURATIONS IN A COLLAR

For $A_{\partial}=S(\tilde{H}(M)) \Longrightarrow$ coalgebra in Graphs $_{n}$-comodules aGraphs $A_{A_{\partial}}$:

- coalgebra: graph cutting

- Graphs ${ }_{n}$-comodule: subgraph contraction.

CONFIGURATIONS IN A COLLAR

For $A_{\partial}=S(\tilde{H}(M)) \Longrightarrow$ coalgebra in Graphs n_{n}-comodules aGraphs $A_{A_{\partial}}$:

- coalgebra: graph cutting

- Graphs ${ }_{n}$-comodule: subgraph contraction.

Theorem (Campos-I.-Lambrechts-Willwacher)
$\mathrm{aGraphs}_{\mathrm{A}_{\partial}} \simeq \Omega_{\mathrm{PA}}^{*}\left(\mathrm{aFM} \mathrm{D}_{\partial M}\right)$ with all the structure.

CONFIGURATIONS IN A COLLAR

For $A_{\partial}=S(\tilde{H}(M)) \Longrightarrow$ coalgebra in Graphs n_{n}-comodules aGraphs $A_{A_{\partial}}$:

- coalgebra: graph cutting

- Graphs ${ }_{n}$-comodule: subgraph contraction.

Theorem (Campos-I.-Lambrechts-Willwacher)
$\operatorname{aGraphs}_{\mathrm{A}_{\partial}} \simeq \Omega_{\mathrm{PA}}^{*}\left(\mathrm{aFM} \mathrm{D}_{\partial M}\right)$ with all the structure.

Corollary

For a closed smooth ($n-1$)-manifold $N=\partial M$, the real homotopy type of N determines the real homotopy type of aFM . $^{\text {. }}$

CONFIGURATIONS IN THE INTERIOR

mGraphs $_{A}$: aGraphs $A_{A_{\partial}}$-comodule in Hopf Graphs ${ }_{n}$-comodules given by A-labeled graphs

- aGraphs $_{A_{\partial}}$-comodule: graph cutting + restrict labels to A_{∂};

CONFIGURATIONS IN THE INTERIOR

mGraphs $_{A}:$ aGraphs $_{A_{\partial}}$-comodule in Hopf Graphs n_{n}-comodules given by A-labeled graphs

- aGraphs $_{A_{\partial}}$-comodule: graph cutting + restrict labels to A_{∂};
- Graphs ${ }_{n}$-comodule: subgraph contraction;

CONFIGURATIONS IN THE INTERIOR

mGraphs $_{A}:$ aGraphs $_{A_{\partial}}$-comodule in Hopf Graphs n_{n}-comodules given by A-labeled graphs

- aGraphs $A_{A_{\partial}}$-comodule: graph cutting + restrict labels to A_{∂};
- Graphs ${ }_{n}$-comodule: subgraph contraction;
- differential: edge contraction + internal vertices go to ∞.

CONFIGURATIONS IN THE INTERIOR

mGraphs $_{A}:$ aGraphs $_{A_{\partial}}$-comodule in Hopf Graphs n_{n}-comodules given by A-labeled graphs

- aGraphs $_{A_{\partial}}$-comodule: graph cutting + restrict labels to A_{∂};
- Graphs ${ }_{n}$-comodule: subgraph contraction;
- differential: edge contraction + internal vertices go to ∞.

Theorem (Campos-I.-Lambrechts-Willwacher)
$\mathrm{mGraphs}_{\mathrm{A}} \simeq \Omega_{\mathrm{PA}}^{*}\left(\mathrm{mFM} M_{M}\right)$ with all the structure.

CONFIGURATIONS IN THE INTERIOR

mGraphs $_{A}:$ aGraphs $_{A_{\partial}}$-comodule in Hopf Graphs n_{n}-comodules given by A-labeled graphs

- aGraphs $_{A_{\partial}}$-comodule: graph cutting + restrict labels to A_{∂};
- Graphs ${ }_{n}$-comodule: subgraph contraction;
- differential: edge contraction + internal vertices go to ∞.

Theorem (Campos-I.-Lambrechts-Willwacher)
$\mathrm{mGraphs} \mathrm{A}_{\mathrm{A}} \simeq \Omega_{\mathrm{PA}}^{*}\left(\mathrm{mFM} M_{M}\right)$ with all the structure.

Corollary

For a smooth compact manifold with boundary M of dimension ≥ 4, the real homotopy type of $(M, \partial M)$ determines the real homotopy type of $m F M_{M}=\overline{\operatorname{Conf}}(M)$.

The Lambrechts-Stanley Model

Poincaré duality

Goal
Obtain a smaller model for configuration spaces.

Poincaré duality

Goal

Obtain a smaller model for configuration spaces.

Poincaré duality CDGA (P, ε) :

- P: connected finite-type CDGA;
- $\varepsilon: P^{n} \rightarrow \mathbb{R}$ such that $\varepsilon \circ d=0$;
- $P^{k} \otimes P^{n-k} \rightarrow \mathbb{R}, x \otimes y \mapsto \varepsilon(x y)$ is non-degenerate $\forall k \in \mathbb{Z}$.

Poincaré duality

Goal

Obtain a smaller model for configuration spaces.

Poincaré duality CDGA (P, ε) :

- P: connected finite-type CDGA;
$\cdot \varepsilon: P^{n} \rightarrow \mathbb{R}$ such that $\varepsilon \circ d=0$;
- $P^{k} \otimes P^{n-k} \rightarrow \mathbb{R}, x \otimes y \mapsto \varepsilon(x y)$ is non-degenerate $\forall k \in \mathbb{Z}$.

Theorem (Lambrechts-Stanley 2008)

M : simply connected + closed $\Longrightarrow \exists(P, \varepsilon)$ Poincaré duality model:

$$
P \underset{\leftarrow}{\sim} \xrightarrow{\sim} \Omega^{*}(M) .
$$

The Lambrechts-Stanley Model

Lambrechts-Stanley model (Intuition: $\left.\operatorname{Conf}_{k}(M)=M^{k} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}\right)$

$$
G_{p}(k):=\left(\frac{p^{\otimes k} \otimes H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)}{p_{i}^{*}(x) \omega_{i j}=p_{j}^{*}(x) \omega_{i j}}, d \omega_{i j}=p_{i j}^{*}\left(\Delta_{P}\right)\right)
$$

The Lambrechts-Stanley Model

Lambrechts-Stanley model (Intuition: $\operatorname{Conf}_{k}(M)=M^{k} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}$)

$$
G_{p}(k):=\left(\frac{p^{\otimes k} \otimes H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)}{p_{i}^{*}(x) \omega_{i j}=p_{j}^{*}(x) \omega_{i j}}, d \omega_{i j}=p_{i j}^{*}\left(\Delta_{P}\right)\right)
$$

Examples: $G_{p}(0)=\mathbb{R} \checkmark$,

The Lambrechts-Stanley Model

Lambrechts-Stanley model (Intuition: $\left.\operatorname{Conf}_{k}(M)=M^{k} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}\right)$

$$
G_{p}(k):=\left(\frac{p^{\otimes k} \otimes H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)}{p_{i}^{*}(x) \omega_{i j}=p_{j}^{*}(x) \omega_{i j}}, d \omega_{i j}=p_{i j}^{*}\left(\Delta_{P}\right)\right)
$$

Examples: $\mathrm{G}_{P}(0)=\mathbb{R} \checkmark, \mathrm{G}_{P}(1)=P \checkmark$,

The Lambrechts-Stanley Model

Lambrechts-Stanley model (Intuition: $\left.\operatorname{Conf}_{k}(M)=M^{k} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}\right)$

$$
G_{p}(k):=\left(\frac{p^{\otimes k} \otimes H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)}{p_{i}^{*}(x) \omega_{i j}=p_{j}^{*}(x) \omega_{i j}}, d \omega_{i j}=p_{i j}^{*}\left(\Delta_{P}\right)\right)
$$

Examples: $\mathrm{G}_{P}(0)=\mathbb{R} \checkmark, \mathrm{G}_{P}(1)=P \checkmark, \mathrm{G}_{P}(2) \simeq P^{\otimes 2} /\left(\Delta_{P}\right)$.

The Lambrechts-Stanley Model

Lambrechts-Stanley model (Intuition: $\left.\operatorname{Conf}_{k}(M)=M^{k} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}\right)$

$$
G_{p}(k):=\left(\frac{p^{\otimes k} \otimes H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)}{p_{i}^{*}(x) \omega_{i j}=p_{j}^{*}(x) \omega_{i j}}, d \omega_{i j}=p_{i j}^{*}\left(\Delta_{P}\right)\right)
$$

Examples: $\mathrm{G}_{P}(0)=\mathbb{R} \checkmark, \mathrm{G}_{P}(1)=P \checkmark, \mathrm{G}_{P}(2) \simeq P^{\otimes 2} /\left(\Delta_{P}\right)$.
Theorem (Lambrechts-Stanley 2008)
$H^{i}\left(G_{p}(k)\right) \cong \Sigma_{\Sigma_{k}}$-Vect $H^{i}\left(\operatorname{Conf}_{k}(M)\right)$.

The Lambrechts-Stanley Model

Lambrechts-Stanley model (Intuition: $\left.\operatorname{Conf}_{k}(M)=M^{k} \backslash \bigcup_{i \neq j}\left\{x_{i}=x_{j}\right\}\right)$

$$
G_{p}(k):=\left(\frac{p^{\otimes k} \otimes H^{*}\left(\operatorname{Conf}_{k}\left(\mathbb{R}^{n}\right)\right)}{p_{i}^{*}(x) \omega_{i j}=p_{j}^{*}(x) \omega_{i j}}, d \omega_{i j}=p_{i j}^{*}\left(\Delta_{p}\right)\right)
$$

Examples: $\mathrm{G}_{P}(0)=\mathbb{R} \checkmark, \mathrm{G}_{P}(1)=P \checkmark, \mathrm{G}_{P}(2) \simeq P^{\otimes 2} /\left(\Delta_{P}\right)$.
Theorem (Lambrechts-Stanley 2008)
$H^{i}\left(G_{p}(k)\right) \cong_{\Sigma_{k} \text {-Vect }} H^{i}\left(\operatorname{Conf}_{k}(M)\right)$.
Theorem (I.)
M smooth, closed, simply connected manifold, $\operatorname{dim} M \geq 4 \Longrightarrow$

$$
\mathrm{G}_{p}(k) \underset{\mathrm{Graphs}}{\mathrm{~A}} \text { } \xrightarrow{\sim} \Omega_{\mathrm{PA}}^{*}\left(\mathrm{FM}_{M}\right),
$$

compatible with $H^{*}\left(\mathrm{FM}_{n}\right) \underset{\leftarrow}{\leftarrow} \mathrm{Graphs}_{n} \xrightarrow{\sim} \Omega_{\mathrm{PA}}^{*}\left(\mathrm{FM}_{n}\right)$ if parallelized.

Poincaré-Lefschetz duality

$\partial M \neq \varnothing \Longrightarrow H^{*}(M)$ is paired with $H^{n-*}(M, \partial M)$

Poincaré-Lefschetz duality

$\partial M \neq \varnothing \Longrightarrow H^{*}(M)$ is paired with $H^{n-*}(M, \partial M)$ Poincaré-Lefschetz duality pair $\left(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial}\right)$:

- $\left(B_{\partial}, \varepsilon_{\partial}\right)$: Poincaré duality CDGA dim. $n-1$;

POINCARÉ-LEFSCHETZ DUALITY

$\partial M \neq \varnothing \Longrightarrow H^{*}(M)$ is paired with $H^{n-*}(M, \partial M)$ Poincaré-Lefschetz duality pair $\left(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial}\right)$:

- $\left(B_{\partial}, \varepsilon_{\partial}\right)$: Poincaré duality CDGA dim. $n-1$;
- B: fin.type connected CDGA;

POINCARÉ-LEFSCHETZ DUALITY

$\partial M \neq \varnothing \Longrightarrow H^{*}(M)$ is paired with $H^{n-*}(M, \partial M)$
Poincaré-Lefschetz duality pair $\left(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial}\right)$:

- $\left(B_{\partial}, \varepsilon_{\partial}\right)$: Poincaré duality CDGA dim. $n-1$;
- B: fin.type connected CDGA;
(models $\partial M, \int_{\partial M}$)
- $\lambda: B \rightarrow B_{\partial}$: surjective morphism ;
(models M)
(models $\partial M \hookrightarrow M$)

POINCARÉ-LEFSCHETZ DUALITY

$\partial M \neq \varnothing \Longrightarrow H^{*}(M)$ is paired with $H^{n-*}(M, \partial M)$
Poincaré-Lefschetz duality pair $\left(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial}\right)$:

- $\left(B_{\partial}, \varepsilon_{\partial}\right)$: Poincaré duality CDGA dim. $n-1$;
- B: fin.type connected CDGA;
(models $\partial M, \int_{\partial M}$)
(models M)
- $\lambda: B \rightarrow B_{\partial}$: surjective morphism ;
- $\varepsilon: B^{n} \rightarrow \mathbb{R}$ s.t. $\varepsilon(d y)=\varepsilon_{\partial}(\lambda(y))$;

POINCARÉ-LEFSCHETZ DUALITY

$\partial M \neq \varnothing \Longrightarrow H^{*}(M)$ is paired with $H^{n-*}(M, \partial M)$
Poincaré-Lefschetz duality pair $\left(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial}\right)$:

- $\left(B_{\partial}, \varepsilon_{\partial}\right)$: Poincaré duality CDGA dim. $n-1$;
- B: fin.type connected CDGA;
(models $\partial M, \int_{\partial M}$)
- $\lambda: B \rightarrow B_{\partial}$: surjective morphism ;
- $\varepsilon: B^{n} \rightarrow \mathbb{R}$ s.t. $\varepsilon(d y)=\varepsilon_{\partial}(\lambda(y))$;
- $K:=\operatorname{ker} \lambda \Longrightarrow B \xrightarrow{\theta} K^{\vee}[-n], b \mapsto \varepsilon(b \cdot-)$ is a surj. q.iso. $\left(K \simeq \Omega^{*}(M, \partial M)\right)$

POINCARÉ-LEFSCHETZ DUALITY

$\partial M \neq \varnothing \Longrightarrow H^{*}(M)$ is paired with $H^{n-*}(M, \partial M)$
Poincaré-Lefschetz duality pair $\left(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial}\right)$:

- $\left(B_{\partial}, \varepsilon_{\partial}\right)$: Poincaré duality CDGA dim. $n-1$;
- B: fin.type connected CDGA;
(models $\partial M, \int_{\partial M}$)
- $K:=\operatorname{ker} \lambda \Longrightarrow B \xrightarrow{\theta} K^{\vee}[-n], b \mapsto \varepsilon(b \cdot-)$ is a surj. q.iso. $\left(K \simeq \Omega^{*}(M, \partial M)\right)$ $\Longrightarrow P:=B / \operatorname{ker} \theta$ is a model of M;

POINCARÉ-LEFSCHETZ DUALITY

$\partial M \neq \varnothing \Longrightarrow H^{*}(M)$ is paired with $H^{n-*}(M, \partial M)$
Poincaré-Lefschetz duality pair $\left(B \xrightarrow{\lambda} B_{\partial}, \varepsilon, \varepsilon_{\partial}\right)$:

- $\left(B_{\partial}, \varepsilon_{\partial}\right)$: Poincaré duality CDGA dim. $n-1$;
- B: fin.type connected CDGA;
(models $\partial M, \int_{\partial M}$)
(models M)
(models $\partial M \hookrightarrow M$)
(models $\int_{M}(-) \&$ Stokes)
- $K:=\operatorname{ker} \lambda \Longrightarrow B \xrightarrow{\theta} K^{\vee}[-n], b \mapsto \varepsilon(b \cdot-)$ is a surj. q.iso. $\left(K \simeq \Omega^{*}(M, \partial M)\right)$
$\Longrightarrow P:=B / \operatorname{ker} \theta$ is a model of M;
$\Longrightarrow P^{k} \otimes K^{n-k} \rightarrow \mathbb{R}, x \otimes y \mapsto \varepsilon(x y)$ is non-degenerate for all k.

EXAMPLE AND EXISTENCE

Example

If $M=N \backslash D^{n}$ with N closed,

EXAMPLE AND EXISTENCE

Example

If $M=N \backslash D^{n}$ with N closed, let \tilde{P} : Poincaré duality model of $N \Longrightarrow$

$$
B=\left(\tilde{P} \oplus \mathbb{R} v_{n-1}, d v=\operatorname{vol}_{\tilde{P}}\right) \rightarrow B_{\partial}=H^{*}\left(S^{n-1}\right)=\left(\mathbb{R} \oplus \mathbb{R} v_{n-1}, d=0\right)
$$

and $P=\tilde{P} / \operatorname{vol}_{\tilde{P}}$ is paired with $K=\operatorname{ker}(\tilde{P} \rightarrow \mathbb{R})$.

EXAMPLE AND EXISTENCE

Example

If $M=N \backslash D^{n}$ with N closed, let \tilde{P} : Poincaré duality model of $N \Longrightarrow$

$$
B=\left(\tilde{P} \oplus \mathbb{R} v_{n-1}, d v=\operatorname{vol}_{\tilde{P}}\right) \rightarrow B_{\partial}=H^{*}\left(S^{n-1}\right)=\left(\mathbb{R} \oplus \mathbb{R} v_{n-1}, d=0\right)
$$

and $P=\tilde{P} / \operatorname{vol}_{\tilde{P}}$ is paired with $K=\operatorname{ker}(\tilde{P} \rightarrow \mathbb{R})$.

Proposition

If M and ∂M are simply connected and $\operatorname{dim} M \geq 7$, then $(M, \partial M)$ has a PLD model.

EXAMPLE AND EXISTENCE

Example

If $M=N \backslash D^{n}$ with N closed, let \tilde{P} : Poincaré duality model of $N \Longrightarrow$

$$
B=\left(\tilde{P} \oplus \mathbb{R} v_{n-1}, d v=\operatorname{vol}_{\tilde{P}}\right) \rightarrow B_{\partial}=H^{*}\left(S^{n-1}\right)=\left(\mathbb{R} \oplus \mathbb{R} v_{n-1}, d=0\right)
$$

and $P=\tilde{P} / \operatorname{vol}_{\tilde{P}}$ is paired with $K=\operatorname{ker}(\tilde{P} \rightarrow \mathbb{R})$.

Proposition

If M and ∂M are simply connected and $\operatorname{dim} M \geq 7$, then $(M, \partial M)$ has a PLD model.

Also true if M has a "surjective pretty model", cf. results of Cordova Bulens-Lambrechts-Stanley.

EXAMPLE AND EXISTENCE

Example

If $M=N \backslash D^{n}$ with N closed, let \tilde{P} : Poincaré duality model of $N \Longrightarrow$

$$
B=\left(\tilde{P} \oplus \mathbb{R} v_{n-1}, d v=\operatorname{vol}_{\tilde{P}}\right) \rightarrow B_{\partial}=H^{*}\left(S^{n-1}\right)=\left(\mathbb{R} \oplus \mathbb{R} v_{n-1}, d=0\right)
$$

and $P=\tilde{P} / \operatorname{vol}_{\tilde{P}}$ is paired with $K=\operatorname{ker}(\tilde{P} \rightarrow \mathbb{R})$.

Proposition

If M and ∂M are simply connected and $\operatorname{dim} M \geq 7$, then $(M, \partial M)$ has a PLD model.

Also true if M has a "surjective pretty model", cf. results of Cordova Bulens-Lambrechts-Stanley.

Remark

We can use PLD pairs instead of $S(\tilde{H}(M) \oplus H(M, \partial M))$ and $S(\tilde{H}(\partial M))$ in all the graph models.

THE NAIVE MODEL

$\left(B, B_{\partial}\right)$ PLD model, $P=B / \operatorname{ker} \theta \Longrightarrow$ similar definition of G_{P}

THE NAIVE MODEL

$\left(B, B_{\partial}\right)$ PLD model, $P=B / \operatorname{ker} \theta \Longrightarrow$ similar definition of G_{P}
Theorem (Campos-I.-Lambrechts-Willwacher)
$\operatorname{dim} H^{i}\left(\operatorname{Conf}_{k}(M)\right)=\operatorname{dim} H^{i}\left(G_{p}(k)\right)$.

THE NAIVE MODEL

$\left(B, B_{\partial}\right)$ PLD model, $P=B / \operatorname{ker} \theta \Longrightarrow$ similar definition of G_{P}
Theorem (Campos-I.-Lambrechts-Willwacher)
$\operatorname{dim} H^{i}\left(\operatorname{Conf}_{k}(M)\right)=\operatorname{dim} H^{i}\left(G_{p}(k)\right)$.
Problem: $G_{P}(k)$ is not an actual model of $\operatorname{Conf}_{k}(M)$.

The naive model

$\left(B, B_{\partial}\right)$ PLD model, $P=B / \operatorname{ker} \theta \Longrightarrow$ similar definition of G_{P}
Theorem (Campos-I.-Lambrechts-Willwacher) $\operatorname{dim} H^{i}\left(\operatorname{Conf}_{k}(M)\right)=\operatorname{dim} H^{i}\left(G_{p}(k)\right)$.

Problem: $G_{p}(k)$ is not an actual model of $\operatorname{Conf}_{k}(M)$.

Motivation

$$
M=S^{1} \times \mathbb{R} \cong \mathbb{R}^{2} \backslash\{0\} \Longrightarrow \operatorname{Conf}_{2}(M) \simeq \operatorname{Conf}_{3}\left(\mathbb{R}^{2}\right)
$$

THE NAIVE MODEL

$\left(B, B_{\partial}\right)$ PLD model, $P=B / \operatorname{ker} \theta \Longrightarrow$ similar definition of G_{P}
Theorem (Campos-I.-Lambrechts-Willwacher)
$\operatorname{dim} H^{i}\left(\operatorname{Conf}_{k}(M)\right)=\operatorname{dim} H^{i}\left(G_{p}(k)\right)$.
Problem: $G_{p}(k)$ is not an actual model of $\operatorname{Conf}_{k}(M)$.

Motivation

$M=S^{1} \times \mathbb{R} \cong \mathbb{R}^{2} \backslash\{0\} \Longrightarrow \operatorname{Conf}_{2}(M) \simeq \operatorname{Conf}_{3}\left(\mathbb{R}^{2}\right)$
Then $P=H^{*}(M)=\mathbb{R} \oplus \mathbb{R} \eta$.

- in $\mathrm{G}_{p}(2):(1 \otimes \eta) \omega_{12}=(\eta \otimes 1) \omega_{12}$.
- in $\operatorname{Conf}_{3}\left(\mathbb{R}^{2}\right)$ (Arnold): $(1 \otimes \eta) \omega_{12}=(\eta \otimes 1) \omega_{12} \pm(\eta \otimes \eta)$.

The actual model

We define a "perturbed" model $\tilde{G}_{p}(k)$: comes from the extra piece of the differential where an internal vertex can "go to infinity".

THE ACTUAL MODEL

We define a "perturbed" model $\tilde{G}_{p}(k)$: comes from the extra piece of the differential where an internal vertex can "go to infinity".

Proposition

Isomorphism of dg-modules $\mathbf{G}_{p}(k) \cong \tilde{\mathbf{G}}_{p}(k)$.

THE ACTUAL MODEL

We define a "perturbed" model $\tilde{G}_{p}(k)$: comes from the extra piece of the differential where an internal vertex can "go to infinity".

Proposition

Isomorphism of dg-modules $\mathrm{G}_{p}(k) \cong \tilde{\mathrm{G}}_{p}(k)$.
Theorem (Campos-I.-Lambrechts-Willwacher)
For a smooth compact simply connected manifold M with $\operatorname{dim} M \geq 7$ and simply connected boundary, $\tilde{\mathrm{G}}_{p}(k) \simeq \Omega_{\mathrm{PA}}^{*}(\mathrm{mFM}(k))$, compatible with FM_{n}-action.

THE ACTUAL MODEL

We define a "perturbed" model $\tilde{G}_{p}(k)$: comes from the extra piece of the differential where an internal vertex can "go to infinity".

Proposition

Isomorphism of dg-modules $\mathrm{G}_{p}(k) \cong \tilde{\mathrm{G}}_{p}(k)$.
Theorem (Campos-I.-Lambrechts-Willwacher)
For a smooth compact simply connected manifold M with $\operatorname{dim} M \geq 7$ and simply connected boundary, $\tilde{\mathrm{G}}_{P}(k) \simeq \Omega_{\mathrm{PA}}^{*}(\mathrm{mFM}(k))$, compatible with FM_{n}-action.

For $\operatorname{dim} M \leq 6$, we can define $\tilde{G}_{H^{*}(M)}(k)=\operatorname{mGraphs}_{H^{*}(M)}(k) /($ int. vtx.), still a model but less explicit if $\operatorname{dim} M \leq 3$.

THANK YOU FOR YOUR ATTENTION!

These slides, links to papers: https://idrissi.eu

