Configuration spaces and Operads

Najib Idrissi (in part j/w Campos, Ducoulombier, Lambrechts, Willwacher) January 2019 @ Higher Structures, CIRM

PARIS
DIDEROT I N-PRG

CONFIGURATION SPACES

M: n-manifold

$$
\operatorname{Conf}_{r}(M):=\left\{\left(x_{1}, \ldots, x_{r}\right) \in M^{r} \mid \forall i \neq j, x_{i} \neq x_{j}\right\}
$$

- Braid groups
- Loop spaces
(name dropping) • Moduli spaces of curves
- Particles in movement [physics]
- Motion planning [robotics]

OPEN QUESTION

Question

Does the homotopy type of M determine the homotopy type of $\operatorname{Conf}_{r}(M)$? How to compute homotopy invariants of $\operatorname{Conf}_{r}(M)$?

Non-compact manifolds
False: $\operatorname{Conf}_{2}(\mathbb{R}) \nsim \operatorname{Conf}_{2}(\{0\})$ even though $\mathbb{R} \sim\{0\}$.

Closed manifolds

Longoni-Salvatore (2005): counter-example (lens spaces)... but not simply connected.

Simply connected closed manifolds

Homotopy invariance is still open.
We can also localize: $M \simeq_{\mathbb{Q}} N \Longrightarrow \operatorname{Conf}_{r}(M) \simeq_{\mathbb{Q}} \operatorname{Conf}_{r}(N)$?

CONFIGURATIONS IN A EUCLIDEAN SPACES

Presentation of $H^{*}\left(\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)\right)$ [Arnold, Cohen]

- Generators: $\omega_{i j}$ of degree $n-1$ (for $1 \leq i \neq j \leq r$)
- Relations:

$$
\omega_{i j}^{2}=\omega_{j i}-(-1)^{n} \omega_{i j}=\omega_{i j} \omega_{j k}+\omega_{j k} \omega_{k i}+\omega_{k i} \omega_{i j}=0
$$

Theorem (Arnold 1969)

Formality: $H^{*}\left(\operatorname{Conf}_{r}(\mathbb{C})\right) \sim_{\mathbb{C}} \Omega_{\mathrm{dR}}^{*}\left(\operatorname{Conf}_{r}(\mathbb{C})\right), \omega_{i j} \mapsto \mathrm{~d} \log \left(z_{i}-z_{j}\right)$.
Theorem (Kontsevich 1999, Lambrechts-Volić 2014)
$H^{*}\left(\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)\right) \sim_{\mathbb{R}} \Omega_{\mathrm{dR}}^{*}\left(\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)\right)$ for all $r \geq 0$ and $n \geq 2$.

Corollary

The cohomology of $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$ determines its rational homotopy type.

Kontsevich's graph complexes

Arnold relations: $R_{123}=$

$\Longrightarrow H^{*}\left(\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)\right)=\mathbb{R}\left\langle\right.$ graphs with r vertices〉/($\left.R_{i j k}\right)$
\rightsquigarrow add "internal" vertices and a differential which

Theorem (Kontsevich 1999, Lambrechts-Volić 2014 - Part 1)
We get a quasi-free CDGA Graphs ${ }_{n}(r)$ and a quasi-isomorphism $\operatorname{Graphs}_{n}(r) \xrightarrow{\sim} H^{*}\left(\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)\right)$.

Kontsevich's integrals

The relations $R_{i j k}$ are only satisfied up to homotopy in $\Omega^{*}\left(\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)\right)$. How to find representatives to get $\mathrm{Graphs}_{n}(r) \xrightarrow{\sim} \Omega^{*}\left(\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)\right)$?

Let $\varphi \in \Omega^{n-1}\left(\operatorname{Conf}_{2}\left(\mathbb{R}^{n}\right)\right)$ be the volume form.
For $\Gamma \in \operatorname{Graphs}_{n}(r)$ with i internal vertices:

$$
\omega(\Gamma):=\int_{\operatorname{Conf}_{r+i}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Conf}_{f}\left(\mathbb{R}^{n}\right)} \bigwedge_{(i) \in E_{\Gamma}} \varphi_{i j} .
$$

Theorem (Kontsevich 1999, Lambrechts-Volić 2014 - Part 2)
We get a quasi-isomorphism $\omega: \operatorname{Graphs}_{n}(r) \xrightarrow{\sim} \Omega\left(\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)\right)$.
\triangle I'm cheating! We have to compactify $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$ to make sure \int converges and to apply the Stokes formula correctly.

COMPACTIFICATION

Problem: $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$ is not compact.
Fulton-MacPherson compactification $\operatorname{Conf}_{r}(M) \stackrel{\sim}{\hookrightarrow} \mathrm{FM}_{M}(r)$

M closed manifold \Longrightarrow semi-algebraic stratified manifold dim $=n r$

ANIMATION \#1

ANIMATION \#1

ANIMATION \#2

ANIMATION \#2

ANIMATION \#3

ANIMATION \#3

Compactification of $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$

We have to "normalize" $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$ to mitigate the non-compacity of \mathbb{R}^{n} :

$$
\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right) \xrightarrow{\sim} \operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right) /\left(\mathbb{R}^{n} \rtimes \mathbb{R}_{>0}\right) \stackrel{\sim}{\hookrightarrow} \mathrm{FM}_{n}(r)
$$

\Longrightarrow semi-algebraic stratified manifold $\operatorname{dim}=n r-n-1$

OPERAD

We see a new structure on FM_{n} : an operad! We can "insert" an infinitesimal configuration in another one:

$$
\mathrm{FM}_{n}(k) \times \mathrm{FM}_{n}(l) \xrightarrow{\mathrm{o}_{i}} \mathrm{FM}_{n}(k+l-1), \quad 1 \leq i \leq k
$$

Remark

Weakly equivalent to the "little disks operad".

COMPLETE THEOREM

Functoriality $\Longrightarrow H^{*}\left(\mathrm{FM}_{n}\right)=H^{*}\left(\operatorname{Conf}_{\bullet}\left(\mathbb{R}^{n}\right)\right)$ and $\Omega^{*}\left(\mathrm{FM}_{n}\right)$ are Hopf cooperads; Graphs n is one too, and:

Theorem (Kontsevich 1999, Lambrechts-Volić 2014)
The operad FM_{n} is formal over \mathbb{R} :

$$
\Omega^{*}\left(\mathrm{FM}_{n}\right) \underset{\omega}{\underset{\omega}{\sim} \text { Graphs}_{n} \xrightarrow{\sim} H^{*}\left(\mathrm{FM}_{n}\right)}
$$

Formality has important applications, e.g. Deligne conjecture, deformation quantization of Poisson manifolds, etc.
(Note: $H_{*}\left(F_{n}\right)$ governs Poisson n-algebras for $n \geq 2$.)

THE LAMBRECHTS-STANLEY MODEL

M: oriented closed manifold
A $\sim \Omega(M)$: Poincaré duality model of M
$\mathrm{G}_{A}(r):$ (conjectural) model of $\operatorname{Conf}_{r}(M)=M^{\times r} \backslash \bigcup_{i \neq j} \Delta_{i j}$

- "Generators": $A^{\otimes r}$ and the $\omega_{i j}$ from $\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)$
- Arnold relations + symmetry
- d $\omega_{i j}$ kills the dual of $\left[\Delta_{i j}\right]$.

Examples:

- $G_{A}(0)=\mathbb{R}$ is a model of $\operatorname{Conf}_{0}(M)=\{\varnothing\} \quad \checkmark$
- $G_{A}(1)=A$ is a model of $\operatorname{Conf}_{1}(M)=M$
- $G_{A}(2) \sim A^{\otimes 2} /\left(\Delta_{A}\right)$ should be a model of $\operatorname{Conf}_{2}(M)=M^{2} \backslash \Delta$?
- $r \geq 3$: more complicated.

BRIEF HISTORY OF G_{A}

1969 [Arnold, Cohen] $H^{*}\left(\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)\right)=\mathrm{G}_{H^{*}\left(\mathbb{R}^{n}\right)}(r)$
1978 [Cohen-Taylor] spectral sequence $E^{2}=G_{H^{*}(M)}(k) \Rightarrow H^{*}\left(\operatorname{Conf}_{k}(M)\right)$
1994 For smooth projective complex manifolds (\Longrightarrow Kähler):

- [Křiž] $\mathrm{G}_{H^{*}(M)}(r)$ is a model of $\operatorname{Conf}_{r}(M)$;
- [Totaro] the Cohen-Taylor SS collapses.

2004 [Lambrechts-Stanley] model for $r=2$ if $\pi_{\leq 2}(M)=0$
2004 [Félix-Thomas, Berceanu-Markl-Papadima] relation with Bendersky-Gitler spectral sequence
2008 [Lambrechts-Stanley] $H^{i}\left(G_{A}(r)\right) \cong_{\Sigma_{r} \text {-Vect }} H^{i}\left(\operatorname{Conf}_{r}(M)\right)$
2015 [Cordova Bulens] model for $r=2$ if $\operatorname{dim} M=2 m$

FIRST PART OF THE THEOREM

By generalizing the proof of Kontsevich \& Lambrechts-Volić:

Theorem (I.)

Let M be a closed simply connected smooth manifold and A be any Poincaré duality model of M. Then $G_{A}(r)$ is a real model of $\operatorname{Conf}_{r}(M)$.

Corollary (cf. Campos-Willwacher)
$M \sim_{\mathbb{R}} N \Longrightarrow \operatorname{Conf}_{r}(M) \sim_{\mathbb{R}} \operatorname{Conf}_{r}(N)$ for all r.
We can "compute everything" over \mathbb{R} for $\operatorname{Conf}_{r}(M)$.

Remark

$\operatorname{dim} M \leq 3$: only spheres (Poincaré conjecture) and we know that G_{A} is a model anyway, but adapting the proof is problematic!

Modules over operads

M parallelized $\Longrightarrow \mathrm{FM}_{M}=\left\{\mathrm{FM}_{M}(r)\right\}_{r \geq 0}$ is a right FM_{n}-module :

We can rewrite:

$$
\mathrm{G}_{A}(r)=\left(A^{\otimes r} \otimes H^{*}\left(\mathrm{FM}_{n}(r)\right) / \text { relations, } d\right)
$$

A bit of abstract nonsense:

Proposition

$\chi(M)=0 \Longrightarrow G_{A}=\left\{G_{A}(r)\right\}_{r \geq 0}$ is a Hopf right $H^{*}\left(F_{n}\right)$-comodule.

Complete version of the Theorem

Theorem (I. 2018)

M : closed simply connected smooth manifold, $\operatorname{dim} M \geq 4$ $\mathrm{G}_{\mathrm{A}} \longleftarrow \sim$ Graphs $_{R} \xrightarrow{\sim}-\Omega_{\mathrm{PA}}^{*}\left(\mathrm{FM}_{M}\right)$

$$
H^{*}\left(\mathrm{FM}_{n}\right) \stackrel{\sim}{\sim} \text { Graphs }_{n} \xrightarrow{\sim} \Omega_{\mathrm{PA}}^{*}\left(\mathrm{FM}_{n}\right)
$$

\dagger if $\chi(M)=0$
\ddagger if M is parallelized.

$$
A \leftleftarrows R \xrightarrow{\sim} \underset{\rightarrow}{\sim} \Omega_{\mathrm{PA}}^{*}(M)
$$

Conclusion

Not only do we have a model of each $\operatorname{Conf}_{r}(M)$, but also of their richer structure if we look at them all at once.

Application 1: Embedding SPACES

Space of embeddings: $\operatorname{Emb}(M, N)=\{f: M \hookrightarrow N\}$.
Goodwillie-Weiss manifold calculus [Arone, Boavida, Turchin, Weiss...]: for parallelized manifolds of codimension ≥ 3,

$$
\operatorname{Emb}(M, N) \simeq \operatorname{Mor}_{\operatorname{Conf}}^{\bullet}\left(\mathbb{R}^{n}\right)\left(\operatorname{Conf} \cdot(M), \operatorname{Conf}_{\bullet}(N)\right)
$$

LS model is small and explicit \Longrightarrow hope: computations are tractable

Remark

Requires to compare $\operatorname{Mor}_{\operatorname{Conf}_{\bullet}\left(\mathbb{R}_{\bullet}\right)}^{h}\left(\operatorname{Conf}_{\bullet}(M), \operatorname{Conf}_{\bullet}(N)\right)^{\mathbb{R}}$ with $\operatorname{Mor}_{\operatorname{Conf}_{\bullet}\left(\mathbb{R}^{n}\right)^{\mathbb{R}}}^{h}\left(\operatorname{Conf}_{\bullet}(M)^{\mathbb{R}}, \operatorname{Conf}_{\bullet}(N)^{\mathbb{R}}\right)$

Application 2: FACTORIZATION HOMOLOGY

Factorization homology = homology where \otimes replaces $\oplus+$ homotopy commutative coefficients.

For an E_{n}-algebra \mathscr{A},

$$
\int_{M} \mathscr{A}=\operatorname{hocolim}_{\left(D^{n}\right)^{ப r} \hookrightarrow M} \mathscr{A}^{\otimes r} .
$$

Alternate description: $\int_{M} \mathscr{A} \sim \operatorname{Conf}_{\bullet}(M) \otimes_{\text {Conf. }}^{h}\left(\mathbb{R}^{n}\right) \mathscr{A}$ [Francis].
Theorem (I. 2018, cf. Markarian '17, Döppenschmidt-Willwacher '18)
M closed simply connected smooth manifold $(\operatorname{dim} \geq 4)$,
$\mathscr{A}:=\mathscr{O}_{\text {poly }}\left(T^{*} \mathbb{R}^{d}[1-n]\right) \Longrightarrow \int_{M} \mathscr{A} \sim_{\mathbb{R}} \mathbb{R}$.

GENERALIZATION 1: MANIFOLDS WITH BOUNDARY

Theorem (Campos-I.-Lambrechts-Willwacher 2018)
For manifolds with boundary: homotopy invariance of $\operatorname{Conf}_{r}(-)$, generalization of the Lambrechts-Stanley model (and more); under good conditions, including $\operatorname{dim} M \geq \ldots$

Remark
Poincaré duality models \rightsquigarrow Poincaré-Lefschetz duality models.

Allows to compute Confr by "induction":

Generalization 2: Oriented manifolds

M : oriented manifold \rightsquigarrow framed configuration space
$\operatorname{Conf}_{r}^{\mathrm{fr}}(M):=\left\{\left(x \in \operatorname{Conf}_{r}(M), B_{1}, \ldots, B_{r}\right) \mid B_{i}\right.$: orth. basis of $\left.T_{x_{i}} M\right\}$.

Natural action of the framed little disks operad on $\left\{\operatorname{Conf}_{\bullet}^{\mathrm{fr}}(M)\right\}$.
Theorem (Campos-Ducoulombier-I.-Willwacher 2018)
Real model of this module based on graph complexes.
First step towards embedding spaces of non-parallelized manifolds. (Not enough: need partially framed configurations for the larger manifold N.)

WIP: COMPLEMENTS OF SUBMANIFOLDS

Goal: $\operatorname{Conf}(N \backslash M)$ where $\operatorname{dim} N-\operatorname{dim} M \geq 2$.
Motivation: work of Ayala, Francis, Rozenblyum, Tanaka Knot complement \rightsquigarrow colored Jones polynomial.

There exists an operad VSC $m n$ which models the local situation $\mathbb{R}^{n} \backslash \mathbb{R}^{m}$:

Theorem (I. 2018)
The operad VSC $_{m n}$ is formal over \mathbb{R} for $n-m \geq 2$.

THANK YOU FOR YOUR ATTENTION!

These slides: https://idrissi.eu

