Swiss-Cheese operad and Drinfeld center

Najib Idrissi

June 3rd, 2016 @ ETH Zürich

1 Background: Little disks and braids

2 The Swiss-Cheese operad

③ Rational model: Chords diagrams and Drinfeld associators

1 Background: Little disks and braids

2 The Swiss-Cheese operad

③ Rational model: Chords diagrams and Drinfeld associators

Little disks operad

The topological **operad** D_n [Boardman–Vogt, May] of little *n*-disks governs homotopy associative and commutative algebras:

Chord diagrams

Braid groups

Proposition

 $D_2(r) \simeq \operatorname{Conf}_r(\mathbb{R}^2) \simeq K(P_r, 1)$

Chord diagrams

Braid groups

Proposition

 $\mathbb{D}_2(r) \simeq \operatorname{Conf}_r(\mathbb{R}^2) \simeq \mathcal{K}(P_r, 1) \implies \mathbb{D}_2 \simeq \mathbb{B}(\pi \mathbb{D}_2)$

Chord diagrams

Braid groupoids

"Extension" of P_r : colored braid groupoid CoB(r)

 $ob CoB(r) = \Sigma_r$, $End_{CoB(r)}(\sigma) \cong P_r$

Little	disks	and	braids
0000	0000	00	

Chord diagrams

Cabling

"Cabling": insertion of a braid inside a strand

Little	disks	and	braids	
0000	0000	00		

Chord diagrams

Cabling

"Cabling": insertion of a braid inside a strand

 \implies {CoB(r)}_{r \geq 1} is a symmetric operad in groupoids:

 $\circ_i: \texttt{CoB}(k) imes \texttt{CoB}(l)
ightarrow \texttt{CoB}(k+l-1), \; 1 \leq i \leq k$

The Swiss-Cheese operad 00000000

Chord diagrams

Little disks and braids

 $CoB(r) \cong$ subgroupoid of $\pi D_2(r)$

The Swiss-Cheese operad 00000000

Chord diagrams

Little disks and braids

 $CoB(r) \cong$ subgroupoid of $\pi D_2(r)$

Problem: inclusion not compatible with operad structure

The Swiss-Cheese operad

Chord diagrams

Little disks and braids (2)

Solution: parenthesized braids PaB

The Swiss-Cheese operad

Chord diagrams

Little disks and braids (2)

Solution: parenthesized braids PaB

Theorem (Fresse; see also results of Fiedorowicz, Tamarkin...)

Operads πD_2 and CoB are weakly equivalent.

 $\pi D_2 \xleftarrow{\sim} PaB \xrightarrow{\sim} CoB$ is a zigzag of weak equivalences of *operads*.

Algebras over categorical operads

- $\mathtt{P} \in \mathsf{Cat}\mathsf{Op} \implies$ a P-algebra is given by:
 - A category C;
 - For every object $x \in ob P(r)$, a functor $\bar{x} : C^{\times r} \to C$;
 - For every morphism f ∈ Hom_{P(r)}(x, y), a natural transformation

 + compatibility with the action of symmetric groups and operadic composition.

For P = CoB, algebras are given by:

• A category C;

• $\sigma \in ob \operatorname{CoB}(r) = \Sigma_r \rightsquigarrow \otimes_{\sigma} : C^{\times r} \to C \text{ s.t. } \otimes_{id_1} = id_C;$

For P = CoB, algebras are given by:

- A category C;
- $\sigma \in ob \operatorname{CoB}(r) = \Sigma_r \rightsquigarrow \otimes_{\sigma} : \mathsf{C}^{\times r} \to \mathsf{C} \text{ s.t. } \otimes_{\mathsf{id}_1} = \mathsf{id}_\mathsf{C};$
- $\otimes_{\sigma}(X_1,\ldots,X_n) = \otimes_{\mathrm{id}_r}(X_{\sigma(1)},\ldots,X_{\sigma(n)});$

For P = CoB, algebras are given by:

- A category C;
- $\sigma \in ob \operatorname{CoB}(r) = \Sigma_r \rightsquigarrow \otimes_{\sigma} : \mathsf{C}^{\times r} \to \mathsf{C} \text{ s.t. } \otimes_{\mathsf{id}_1} = \mathsf{id}_\mathsf{C};$
- $\otimes_{\sigma}(X_1,\ldots,X_n) = \otimes_{\mathrm{id}_r}(X_{\sigma(1)},\ldots,X_{\sigma(n)});$
- $\otimes_{\mathrm{id}_2}(\otimes_{\mathrm{id}_2}(X,Y),Z) = \otimes_{\mathrm{id}_3}(X,Y,Z) = \otimes_{\mathrm{id}_2}(X,\otimes_{\mathrm{id}_2}(Y,Z))...$

For P = CoB, algebras are given by:

- A category C;
- $\sigma \in ob \operatorname{CoB}(r) = \Sigma_r \rightsquigarrow \otimes_{\sigma} : \mathsf{C}^{\times r} \to \mathsf{C} \text{ s.t. } \otimes_{\mathsf{id}_1} = \mathsf{id}_\mathsf{C};$
- $\otimes_{\sigma}(X_1,\ldots,X_n) = \otimes_{\mathrm{id}_r}(X_{\sigma(1)},\ldots,X_{\sigma(n)});$
- $\otimes_{\mathrm{id}_2}(\otimes_{\mathrm{id}_2}(X,Y),Z) = \otimes_{\mathrm{id}_3}(X,Y,Z) = \otimes_{\mathrm{id}_2}(X,\otimes_{\mathrm{id}_2}(Y,Z))...$
- $\beta \in \operatorname{Hom}_{\operatorname{CoB}(r)}(\sigma, \sigma')$ colored braid \rightsquigarrow natural transformation $\beta_* : \otimes_{\sigma} \to \otimes_{\sigma'}$. For example:

For P = CoB, algebras are given by:

- A category C;
- $\sigma \in ob \operatorname{CoB}(r) = \Sigma_r \rightsquigarrow \otimes_{\sigma} : \mathsf{C}^{\times r} \to \mathsf{C} \text{ s.t. } \otimes_{\mathsf{id}_1} = \mathsf{id}_\mathsf{C};$
- $\otimes_{\sigma}(X_1,\ldots,X_n) = \otimes_{\mathrm{id}_r}(X_{\sigma(1)},\ldots,X_{\sigma(n)});$
- $\otimes_{\mathrm{id}_2}(\otimes_{\mathrm{id}_2}(X,Y),Z) = \otimes_{\mathrm{id}_3}(X,Y,Z) = \otimes_{\mathrm{id}_2}(X,\otimes_{\mathrm{id}_2}(Y,Z))...$
- $\beta \in \operatorname{Hom}_{\operatorname{CoB}(r)}(\sigma, \sigma')$ colored braid \rightsquigarrow natural transformation $\beta_* : \otimes_{\sigma} \to \otimes_{\sigma'}$. For example:

$$\overbrace{}^{\overset{1}{\longleftarrow}}_{\overset{1}{\longleftarrow}} \rightsquigarrow \tau_{X,Y} : X \otimes Y \to Y \otimes X$$

Theorem (MacLane, Joyal–Street)

An algebra over CoB is a braided monoidal category (strict, no unit).

Extension of the theorem for parenthesized braids:

Theorem

An algebra over PaB is a braided monoidal category (no unit).

Unital versions CoB₊ and PaB₊:

Theorem

An algebra over CoB_+ (resp. PaB_+) is a strict (resp. non-strict) braided monoidal category with a strict (in both cases) unit.

Background: Little disks and braids

2 The Swiss-Cheese operad

8 Rational model: Chords diagrams and Drinfeld associators

Chord diagrams

Definition of the Swiss-Cheese operad

The Swiss-Cheese operad SC [Voronov, 1999] governs a D_2 -algebra acting on a D_1 -algebra. It's a *colored* operad, with two colors \mathfrak{c} ("closed" $\leftrightarrow D_2$) and \mathfrak{o} ("open" $\leftrightarrow D_1$).

The Swiss-Cheese operad •0000000 Chord diagrams

Definition of the Swiss-Cheese operad

The Swiss-Cheese operad SC [Voronov, 1999] governs a D₂-algebra acting on a D₁-algebra. It's a colored operad, with two colors \mathfrak{c} ("closed" \leftrightarrow D₂) and \mathfrak{o} ("open" \leftrightarrow D₁).

The Swiss-Cheese operad •0000000 Chord diagrams

Definition of the Swiss-Cheese operad

The Swiss-Cheese operad SC [Voronov, 1999] governs a D₂-algebra acting on a D₁-algebra. It's a colored operad, with two colors \mathfrak{c} ("closed" \leftrightarrow D₂) and \mathfrak{o} ("open" \leftrightarrow D₁).

The operad CoPB

Idea

Extend CoB to build a colored operad weakly equivalent to π SC.

CoPB(2,3)

The operad CoPB

Idea

Extend CoB to build a colored operad weakly equivalent to π SC.

CoPB(2,3)

Little	disks	and	braids
0000		00	

Chord diagrams

Braidings and semi-braidings

In D_2 / CoB : braiding = homotopy commutativity

Little	disks	and	braids
0000		00	

Chord diagrams

Braidings and semi-braidings

In D_2 / CoB : braiding = homotopy commutativity

In SC / CoPB : half-braiding = "central" morphism

Little disks and braids	The Swiss-Cheese operad
	00000000

Drinfeld center

- C: monoidal category $\rightsquigarrow \Sigma C$ bicategory with one object $\rightsquigarrow Drinfeld center \mathcal{Z}(C) := End(id_{\Sigma C})$
 - objects: (X, Φ) with $X \in C$ and $\Phi : (X \otimes -) \xrightarrow{\cong} (- \otimes X)$ ("half-braiding");
 - {morphisms $(X, \Phi) \rightarrow (Y, \Psi)$ } = {morphisms $X \rightarrow Y$ compatible with Φ and Ψ }.

Theorem (Drinfeld, Joyal–Street 1991, Majid 1991)

 $\mathcal{Z}(C)$ is a braided monoidal category with:

$$(X,\Phi)\otimes (Y,\Psi)=(X\otimes Y,(\Psi\otimes 1)\circ (1\otimes \Phi)),$$

 $\tau_{(X,\Phi),(Y,\Psi)} = \Phi_Y.$

Voronov's theorem

Recall:

$$H_*(\mathtt{D}_1) = \mathtt{Ass}, \quad H_*(\mathtt{D}_2) = \mathtt{Ger}$$

Theorem (Voronov, Hoefel)

An algebra over $H_*(SC)$ is given by:

- An associative algebra A ;
- A Gerstenhaber algebra B ;
- A central morphism of commutative algebras $B \rightarrow Z(A)$.

(Voronov's original version: $B \otimes A \rightarrow A$ instead $B \rightarrow A$)

Theorem (I.)

An algebra over CoPB is given by:

- A (strict non-unital) monoidal category N ;
- A (strict non-unital) braided monoidal category M ;
- A (strict) braided monoidal functor $F : M \to \mathcal{Z}(N)$.
- \rightarrow categorical version of Voronov's theorem

Theorem (I.)

An algebra over CoPB is given by:

- A (strict non-unital) monoidal category N ;
- A (strict non-unital) braided monoidal category M ;
- A (strict) braided monoidal functor $F : M \to \mathcal{Z}(N)$.

 \rightarrow categorical version of Voronov's theorem Like CoB: non-strict and/or unitary versions of the theorem.

Theorem (I.)

An algebra over CoPB is given by:

- A (strict non-unital) monoidal category N ;
- A (strict non-unital) braided monoidal category M ;
- A (strict) braided monoidal functor $F : M \to \mathcal{Z}(N)$.

 \rightarrow categorical version of Voronov's theorem Like CoB: non-strict and/or unitary versions of the theorem.

Remark

Mirrors results of Ayala–Francis–Tanaka and Ginot from the realm of ∞ -categories and factorization algebras.

Generators

We present PaPB by generators and relations:

Idea of the proof

All morphisms can be split in four parts.

Idea of the proof

All morphisms can be split in four parts. The image of a morphism is well-defined thanks to:

- Coherence theorems of MacLane and Epstein;
- Adaptation of the proofs the theorem on PaP and the theorem on PaB;

Background: Little disks and braids

2 The Swiss-Cheese operad

③ Rational model: Chords diagrams and Drinfeld associators

Chord diagrams operad

Drinfeld-Kohno Lie algebra ("infinitesimal version" of pure braids):

$$\mathfrak{p}(r) = \mathbb{L}(t_{ij})_{1 \leq i \neq j \leq r} / \langle t_{ij} - t_{ji}, [t_{ij}, t_{kl}], [t_{ik}, t_{ij} + t_{jk}] \rangle.$$

Chord diagrams operad

Drinfeld-Kohno Lie algebra ("infinitesimal version" of pure braids):

$$\mathfrak{p}(r) = \mathbb{L}(t_{ij})_{1 \leq i \neq j \leq r} / \langle t_{ij} - t_{ji}, [t_{ij}, t_{kl}], [t_{ik}, t_{ij} + t_{jk}] \rangle.$$

 \rightarrow operad:

 $t_{13}t_{12}t_{12}\circ_3 t_{12} \in \mathbb{U}\mathfrak{p}(4)$

Chord diagrams operad

Drinfeld-Kohno Lie algebra ("infinitesimal version" of pure braids):

$$\mathfrak{p}(r) = \mathbb{L}(t_{ij})_{1 \leq i \neq j \leq r} / \langle t_{ij} - t_{ji}, [t_{ij}, t_{kl}], [t_{ik}, t_{ij} + t_{jk}] \rangle.$$

 \rightarrow operad:

 $t_{13}t_{12}t_{12}\circ_3 t_{12} \in \mathbb{U}\mathfrak{p}(4)$

Mal'cev completion:

 $\widehat{\mathtt{CD}}=\mathbb{G}\hat{\mathbb{U}}\hat{\mathfrak{p}}$

 \rightarrow operad in the category of complete group(oid)s

Drinfeld associators

Drinfeld associators ($\mu \in \mathbb{Q}^{\times}$) :

$$\operatorname{Ass}^{\mu}(\mathbb{Q}) = \{\phi : \operatorname{PaB}_{+} \to \widehat{\operatorname{CD}}_{+} \mid \phi(\tau) = e^{\mu t_{12}/2} \}$$

If $\phi \in Ass^{\mu}(\mathbb{Q})$, then:

$$\Phi(t_{12},t_{23}):=\phi(\alpha)\in\mathbb{G}(\mathbb{Q}[[t_{12},t_{23}]])$$

satisfies the usual equations (pentagon, hexagon)

Drinfeld associators

Drinfeld associators ($\mu \in \mathbb{Q}^{\times}$) :

$$\operatorname{Ass}^{\mu}(\mathbb{Q}) = \{ \phi : \operatorname{PaB}_{+} \to \widehat{\operatorname{CD}}_{+} \mid \phi(\tau) = e^{\mu t_{12}/2} \}$$

If $\phi \in Ass^{\mu}(\mathbb{Q})$, then:

$$\Phi(t_{12}, t_{23}) := \phi(\alpha) \in \mathbb{G}(\mathbb{Q}[[t_{12}, t_{23}]])$$

satisfies the usual equations (pentagon, hexagon)

Theorem (Drinfeld)

 $\operatorname{Ass}^{\mu}(\mathbb{Q}) \neq \emptyset$

 ϕ induces a *rational equivalence* $\pi(D_2)_+ \simeq PaB_+ \xrightarrow{\sim_{\mathbb{Q}}} \widehat{CD}_+$

Formality

Theorem (Kontsevich, 1999; Tamarkin, 2003, n = 2)

The operad D_n is formal: $C_*(D_n) \simeq H_*(D_n)$.

Formality

Theorem (Kontsevich, 1999; Tamarkin, 2003, n = 2)

The operad D_n is formal: $C_*(D_n) \simeq H_*(D_n)$.

Rational homotopy theory: $H^*(P)$ vs Sullivan forms $\Omega^*(P)$

Theorem (Fresse–Willwacher 2015)

 $D_n \simeq_{\mathbb{Q}} \langle H^*(D_n) \rangle^{\mathbb{L}} \implies D_n \text{ is formal over } \mathbb{Q}.$

Formality

Theorem (Kontsevich, 1999; Tamarkin, 2003, n = 2)

The operad D_n is formal: $C_*(D_n) \simeq H_*(D_n)$.

Rational homotopy theory: $H^*(P)$ vs Sullivan forms $\Omega^*(P)$

Theorem (Fresse–Willwacher 2015)

 $D_n \simeq_{\mathbb{Q}} \langle H^*(D_n) \rangle^{\mathbb{L}} \implies D_n \text{ is formal over } \mathbb{Q}.$

In low dimensions:

- $\pi \mathtt{D}_1 \simeq_{\mathbb{Q}} \pi \langle H^*(\mathtt{D}_1) \rangle^{\mathbb{L}} \simeq \mathtt{PaP};$
- Tamarkin: $\operatorname{Ass}(\mathbb{Q}) \neq \varnothing \implies \pi \mathbb{D}_2 \simeq_{\mathbb{Q}} \pi \langle H^*(\mathbb{D}_2) \rangle^{\mathbb{L}} \simeq \widehat{CD}.$

Little	disks	and	braids
0000		00	

Chord diagrams

Non-formality

 $H_*(\mathtt{SC}) = \mathtt{Ger}_+ \otimes_0 \mathtt{Ass}_+$ is a "Voronov product"

Little	disks	and	braids
0000		00	

Chord diagrams

Non-formality

 $H_*(\mathtt{SC}) = \mathtt{Ger}_+ \otimes_0 \mathtt{Ass}_+$ is a "Voronov product"

$$egin{aligned} &\mathcal{H}^*(ext{SC})\cong \left(ext{Ger}_+\otimes_0 ext{Ass}_+
ight)^*\cong ext{Ger}^*_+\otimes_0 ext{Ass}^*_+\ \Longrightarrow &\langle \mathcal{H}^*(ext{SC})
angle^{\mathbb{L}}\simeq &\langle ext{Ger}^*_+
angle^{\mathbb{L}} imes_0 \langle ext{Ass}^*_+
angle^{\mathbb{L}}\ \Longrightarrow &\pi \langle \mathcal{H}^*(ext{SC})
angle^{\mathbb{L}}\simeq_{\mathbb{Q}}\widehat{ ext{CD}}_+ imes_0 ext{PaP}_+ \end{aligned}$$

Little	disks	and	braids
0000		00	

Chord diagrams

Non-formality

 $H_*(\mathtt{SC}) = \mathtt{Ger}_+ \otimes_0 \mathtt{Ass}_+$ is a "Voronov product"

$$egin{aligned} &\mathcal{H}^*(extsf{SC})\cong \left(extsf{Ger}_+\otimes_0 extsf{Ass}_+
ight)^*\cong extsf{Ger}^*_+\otimes_0 extsf{Ass}^*_+\ &\Longrightarrow \langle\mathcal{H}^*(extsf{SC})
angle^{\mathbb{L}}\simeq \langle extsf{Ger}^*_+
angle^{\mathbb{L}} imes_0 \langle extsf{Ass}^*_+
angle^{\mathbb{L}}\ &\Longrightarrow \pi\langle\mathcal{H}^*(extsf{SC})
angle^{\mathbb{L}}\simeq_{\mathbb{Q}}\widehat{ extsf{CD}}_+ imes_0 extsf{PaP}_+ \end{aligned}$$

Theorem (Livernet, 2015)

SC is not formal.

$$\implies \pi \mathtt{SC} \not\simeq_{\mathbb{Q}} \pi \langle H^*(\mathtt{SC}) \rangle^{\mathbb{L}} \simeq_{\mathbb{Q}} \widehat{\mathtt{CD}}_+ \times_{\mathsf{0}} \mathtt{PaP}_+$$

Little	disks	and	braids
0000		00	

Chord diagrams

Non-formality

 $H_*(\mathtt{SC}) = \mathtt{Ger}_+ \otimes_0 \mathtt{Ass}_+$ is a "Voronov product"

$$egin{aligned} &\mathcal{H}^*(extsf{SC})\cong \left(extsf{Ger}_+\otimes_0 extsf{Ass}_+
ight)^*\cong extsf{Ger}^*_+\otimes_0 extsf{Ass}^*_+\ &\Longrightarrow \langle\mathcal{H}^*(extsf{SC})
angle^{\mathbb{L}}\simeq \langle extsf{Ger}^*_+
angle^{\mathbb{L}} imes_0 \langle extsf{Ass}^*_+
angle^{\mathbb{L}}\ &\Longrightarrow \pi\langle\mathcal{H}^*(extsf{SC})
angle^{\mathbb{L}}\simeq_{\mathbb{Q}}\widehat{ extsf{CD}}_+ imes_0 extsf{PaP}_+ \end{aligned}$$

Theorem (Livernet, 2015)

SC is not formal.

$$\implies \pi \operatorname{SC}
eq_{\mathbb{Q}} \pi \langle H^*(\operatorname{SC}) \rangle^{\mathbb{L}} \simeq_{\mathbb{Q}} \widehat{\operatorname{CD}}_+ \times_{\mathbf{0}} \operatorname{PaP}_+$$

Remark

Not known if $\mathrm{SC}^{\mathrm{vor}}\simeq^{???}_{\mathbb{Q}}\langle H^*(\mathrm{SC}^{\mathrm{vor}})\rangle^{\mathbb{L}}\simeq_{\mathbb{Q}}\langle \mathrm{Ger}^*\rangle^{\mathbb{L}}\times \langle \mathrm{Ass}^*\rangle^{\mathbb{L}}$

Chord diagrams 0000●0

Rational model of πSC_+

By reusing the proof of the previous theorem, we build a new operad $\operatorname{PaPCD}^{\phi}_+$ (for a given $\phi \in \operatorname{Ass}^{\mu}(\mathbb{Q})$).

Theorem (I.)

$$\pi \text{SC}_+ \simeq_{\mathbb{Q}} \text{PaP}\widehat{\text{CD}}_+^{\phi}.$$

Thank you for your attention!

arXiv:1507.06844

These slides to be available soon at http://math.univ-lille1.fr/~idrissi