CURVED KOSZUL DUALITY FOR ALGEBRAS OVER UNITAL OPERADS

Najib Idrissi

May 2019 @ Higher Algebras in Topology, MPIM Bonn

GOAL

Goal

Find resolutions of "algebras".

Why?

- Compute derived invariants: derived tensor product, derived mapping space...
- · Define homotopy algebras over operads.

Tool of choice: Koszul duality.

QUADRATIC ALGEBRAS - KOSZUL DUALS

Starting data: quadratic algebra A = T(E)/(R), $R \subset E \otimes E$ \leadsto Koszul dual $A^!$: cofree coalgebra on ΣE with "corelations" $\Sigma^2 R$ (Usually easier to understand $A^! = F(E^*)/(R^{\perp})$)

Examples

- 1. $A = T(E), R = 0 \implies A! = E^*$ with trivial multiplication;
- 2. $A = S(E) = T(E)/(xy yx) \implies A! = T(E^*)/(x^*y^* + y^*x^*) = \Lambda(E^*).$

 \implies Koszul complex $K_A := (A \otimes A^i, d_{\kappa}(\Sigma e) = e)$; A is Koszul if K_A is acyclic

Example

T(E) and S(E) are both Koszul.

QUADRATIC ALGEBRAS - KOSZUL RESOLUTIONS

Bar/cobar adjunction:

$$\Omega : \{ coaug.coalgebras \} \subseteq \{ aug.algebras \} : B$$

where
$$BA = (T^c(\Sigma \bar{A}), d_B)$$
 and $\Omega C = (T(\Sigma^{-1} \bar{C}), d_{\Omega})$.

Canonical morphism $\Omega BA \xrightarrow{\sim} A$ is always a cofibrant resolution...but big!

A quadratic $\implies \exists$ canonical morphism $\Omega A^i \rightarrow A$

Theorem (Priddy '70s)

A is Koszul $\iff \Omega A^{i} \xrightarrow{\sim} A$.

Much smaller resolution!

Examples

$$A = T(E) \implies \Omega A^{i} = A = T(E) \text{ versus } \Omega BA = TT^{c}F(E)$$

$$A = S(E) \implies \Omega A^{\dagger} = T \Lambda^{c}(E) \text{ versus } \Omega B A = T T^{c} S(E).$$

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A = T_+(E)/(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Koszul dual $A^{i} = (qA^{i}, d_{A^{i}}, \theta_{A^{i}})$: curved dg-coalgebra

$$r = \underbrace{r_{(2)}}_{\in qR} + \underbrace{r_{(1)}}_{d(r_{(2)})} + \underbrace{r_{(0)}}_{\theta(r_{(2)})} 1 \in R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1.$$

- quadratic $\rightsquigarrow qA \coloneqq T(E)/(qR)$ where $qR \coloneqq \operatorname{proj}_{E^{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{\dagger}}: qA^{\dagger} \rightarrow qA^{\dagger}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A^{i}}: qA^{i} \to \mathbb{R}$ s.t. $d^{2} = (\theta \otimes \operatorname{id} \mp \operatorname{id} \otimes \theta)\Delta$ and $\theta d = 0$.

Example

$$A = U(\mathfrak{g}) = uF(\mathfrak{g})/(xy - yx - [x, y]) \rightsquigarrow qA = T(\mathfrak{g})/(xy - yx) = S(\mathfrak{g})$$

 d_{A^i} = coderivation induced by $d(x \wedge y) = [x, y] \rightsquigarrow A^i = C_*^{CE}(\mathfrak{g})$

QLC ALGEBRAS - RESOLUTIONS

Bar/cobar adjunction:

 $\Omega: \{\text{curved dg-coalgebras}\} \leftrightarrows \{\text{semi.aug.algebras}\}: B$ where $BA = (T^c(\Sigma \bar{A}), d_2 + d_1, \theta)$ and $\Omega(C) = (T_+(\Sigma^{-1}C), d_2 + d_1 + d_0)$.

Theorem (Polischuck, Positselski)

If ${\it q}{\it A}$ is Koszul then $\Omega{\it A}^{\it i} \xrightarrow{\sim} {\it A}$ is a cofibrant resolution.

Example

$$A = U(\mathfrak{g}) \implies qA = S(\mathfrak{g}) \text{ is Koszul } \implies \Omega C_*^{\mathit{CE}}(\mathfrak{g}) \xrightarrow{\sim} U(\mathfrak{g}).$$

Goal: do this for more general types of unital algebras.

OPERADS

What are "more general types of algebras"?

Operad $P = \{P(n)\}_{n \ge 0}$: combinatorial object that encodes a type of algebra.

Examples

The "three graces": Ass = associative algebras; Com = commutative algebras; Lie = Lie algebras.

 E_n = homotopy associative and commutative (for $n \ge 2$) algebras.

 $e_n := H_*(E_n) = \mathsf{Com} \circ \mathsf{Lie}_n, n \ge 2 = \mathsf{Poisson} \ n\text{-algebras}.$

KD FOR QUADRATIC OPERADS

Quadratic operad: P = FOp(E)/(R) where E is a generating set of operations and $R \subset E \circ_{(1)} E$ is a set of quadratic relations.

Example

$$\mathsf{Com} = \mathrm{FOp}(\mu)/(\mu(\mu(x,y),z) = \mu(x,\mu(y,z)))$$
 is quadratic.

Formally similar definitions: Koszul dual cooperad $P^i = \mathrm{FOp^c}(\Sigma E, \Sigma^2 R)$ and its linear dual $P^! = \mathrm{FOp}(E^*)/(R^{\perp})$.

Examples

Ass! = Ass;
$$Com! = Lie$$
, $Lie! = Com$; $e_n! = e_n\{-n\}$.

KOSZUL RESOLUTIONS FOR QUADRATIC OPERADS

Formally similar definitions: bar/cobar adjunction

 $\Omega: \{ \texttt{coaug.cooperads} \} \leftrightarrows \{ \texttt{aug.operads} \} : \textit{B}$

Canonical morphism $\Omega \mathsf{BP} \xrightarrow{\sim} \mathsf{P}$ always a resolution, but very big

Theorem (Ginzburg-Kapranov '94, Getzler-Jones '94, Getzler '95...)

If P is quadratic and Koszul, then $P_{\infty} := \Omega P^{i} \xrightarrow{\sim} P$.

In this case, P_{∞} -algebras = "homotopy P-algebras".

Examples

 $\mathsf{Ass}_\infty = \mathsf{A}_\infty\text{-algebras, }\mathsf{Com}_\infty = \mathsf{C}_\infty\text{-algebras, }\mathsf{Lie}_\infty = \mathsf{L}_\infty\text{-algebras...}$

BIG RESOLUTION OF OPERADIC ALGEBRAS

$$\begin{split} \mathsf{P} &= \mathrm{FOp}(\mathit{E})/(\mathit{R}) \text{ Koszul quadratic operad} \leadsto \mathsf{bar/cobar adjunction:} \\ \Omega_\kappa : \{\mathsf{coaug. P^i\text{-}coalgebras}\} \leftrightarrows \{\mathsf{aug. P\text{-}algebras}\} : \mathit{B}_\kappa, \\ \mathsf{where} \ \Omega_\kappa \mathit{C} &= (\mathsf{P}(\Sigma^{-1}\bar{\mathit{C}}), \mathit{d}) \text{ and } \mathit{B}_\kappa \mathit{A} = (\mathsf{P^i}(\Sigma\bar{\mathit{A}}), \mathit{d}). \\ \leadsto \mathsf{resolution of P\text{-}algebras:} \ \Omega_\kappa \mathit{B}_\kappa(-), \text{ but very big.} \end{split}$$

Example

For a Lie algebra \mathfrak{g} , $\Omega_{\kappa}B_{\kappa}\mathfrak{g}=(L(C_{*-1}^{CE}(\mathfrak{g})),d).$

KD FOR MONOGENIC OPERADIC ALGEBRAS

Recall P = FOp(E)/(R).

Monogenic P-algebras: A = P(V)/(S), $S \subset E(V)$.

(Monogenic = quadratic for binary P)

Koszul dual: $A^{i} := P^{i}(\Sigma V, \Sigma^{2}S)$, $A^{!} = P(V^{*})/(S^{\perp})$.

Koszul complex: $K_A = (A \otimes A^i, d_{\kappa}(\Sigma V) = V)$.

Theorem (Millès '12)

If P is quadratic Koszul and if A is a Koszul monogenic algebra, then $\Omega_\kappa A^i \xrightarrow{\sim} A$ is a resolution of A.

Examples

P = Ass: recovers the classical Koszul duality of associative algebras.

A: quadratic Com-algebra $\implies U(A^!) = (A_{Ass})^!$ [Löfwall].

CURVED KD FOR QLC OPERADS

Operads with QLC relations uP = FOp(E)/(R), $R \subset E \circ_{(1)} E \oplus E \oplus \mathbb{R} \text{ id}$

Koszul dual curved cooperad: $uP^{i} = (quP^{i}, d_{A^{i}}, \theta_{A^{i}})$

- quadratic \rightsquigarrow quP: "quadratization" of uP;
- linear $\rightsquigarrow d_{A^i}: quP^i \rightarrow quP^i$ coderivation;
- constants $\rightsquigarrow \theta_{A^i}: quP^i \to \mathbb{R} \operatorname{id} \text{ s.t. } d^2 = (\theta \circ \operatorname{id} \mp \operatorname{id} \circ \theta)\Delta$ and $\theta d = 0$

Example

$$\begin{split} u\mathsf{Com} &= \mathrm{FOp}(\mu, ^{\P})/(\mu(\mu(x,y),z) = \mu(x,\mu(y,z)), \ \mu(^{\P},x) = x) \\ u\mathsf{Com}^{\mathrm{i}} &= (\mathsf{Com}^{\mathrm{i}} \oplus ^{\P^{\mathsf{C}}}, \ d = 0, \ \theta(\mu^{\mathsf{C}} \circ_1 ^{\P^{\mathsf{C}}}) = -1) \end{split}$$

Bar/cobar extends to the curved setting

Theorem (Hirsh-Millès '12)

If quP is Koszul, then $uP_{\infty} := \Omega(uP^{\dagger}) \xrightarrow{\sim} uP$: resolution of uP

SETTING FOR CURVED KD

Consider P = FOp(E)/(R): binary quadratic operad \rightsquigarrow unital version $uP = FOp(E \oplus ^{\dagger})/(R + R')$:

- $E \hookrightarrow E \oplus \uparrow$ induces $P \hookrightarrow uP$
- $quP \cong P \oplus \uparrow$
- R' has only quadratic-constant terms

Examples

uAss, uCom, cLie, uen...

Algebra with QLC relations A = uP(V)/I:

- *I* is generated by $S := I \cap (^{\dagger} \oplus V \oplus E(V))$
- $\cdot S \cap (^{\dagger} \oplus V) = 0 \text{ ("V is minimal")}$

The second condition is difficult to check!

CURVED KD FOR ALGEBRAS OVER BINARY UNITAL OPERADS

$$uP = \mathrm{FOp}(E \oplus ^{\dagger})/(R + R')$$
: unital version of quadratic $P = \mathrm{FOp}(E)/(R)$
 $A = uP(V)/(S)$: algebra w/ QLC relations $S \subset E(V) \oplus V \oplus ^{\dagger}$

Koszul dual: curved Pi-coalgebra $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$

- quadratic $\rightsquigarrow qA = P(V)/(qS)$: "quadratization" of A;
- linear $\rightsquigarrow d_{Ai}$: coderivation;
- constant $\rightsquigarrow \theta: qA^{\dagger} \rightarrow \mathbb{R}^{\dagger}$ (+ relations)

Generalization of bar/cobar adjunction:

$$\Omega_{\kappa}: \{\text{curved Pi-coalgebras}\} \leftrightarrows \{\text{semi.aug. } u\text{P-algebras}\}: B_{\kappa}$$

Theorem (I. '18)

If qA is Koszul then $\Omega_{\kappa}A^{\dagger} \xrightarrow{\sim} A$ is a resolution.

APPLICATION 1: FACTORIZATION HOMOLOGY

M: framed n-manifold, A: uE_n -algebra (\exists version for unframed manifolds.)

Goal

Compute $\int_M A = \operatorname{hocolim}_{(D^n)^{\sqcup k} \hookrightarrow M} A^{\otimes k}$.

Theorem (Francis 2015)

$$\int_{M} A \simeq \underset{u \in_{n}}{\mathbb{E}_{M}} \circ \underset{u \in_{n}}{\mathbb{L}} A = \operatorname{hocoeq}(E_{M} \circ u E_{n} \circ A \Longrightarrow E_{M} \circ A), \text{ where:}$$

$$u\mathsf{E}_n(k) = \mathrm{Emb}^{\mathrm{fr}}(\underbrace{\mathbb{R}^n \sqcup \cdots \sqcup \mathbb{R}^n}_{k \times}, \mathbb{R}^n); \quad \mathsf{E}_M(k) = \mathrm{Emb}^{\mathrm{fr}}(\underbrace{\mathbb{R}^n \sqcup \cdots \sqcup \mathbb{R}^n}_{k \times}, M).$$

Upshot: data is separated in three + resolution

Chains of factorization homology over ${\mathbb R}$

If we work over $\mathbb R$ and we just want chains:

$$C_*(\int_M A) \simeq C_*(E_M) \circ^{\mathbb{L}}_{C_*(uE_n)} C_*(A).$$

Theorem (Kontsevich '99; Tamarkin '03 (n=2); Lambrechts-Volić '14; Petersen '14 (n=2); Fresse-Willwacher '15)

The operad $C_*(uE_n)$ is formal: $C_*(uE_n) \simeq ue_n \coloneqq H_*(uE_n) = \mathsf{Com} \circ \mathsf{Lie}_n$.

Theorem (I.)

M closed, simply connected, smooth, $\dim M \ge 4 \implies$ Lambrechts–Stanley model of $C_*(E_M)$ as a right $C_*(uE_n)$ -module:

$$LS_M = C_*^{CE}(\mathcal{M}^{n-*} \otimes Lie_n[1-n]) + action of Com.$$

Upshot: $C_*(\int_M A) \simeq \mathsf{LS}_M \circ_{\mathsf{ue}_n}^{\mathbb{L}} \widetilde{A}$ \Longrightarrow we need to resolve A as a ue_n -algebra.

Weyl algebra $\mathscr{O}_{\mathrm{poly}}(T^*\mathbb{R}^d[1-n])$

$$A = \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n]) = S(x_1, \dots, x_d, \xi_1, \dots, \xi_d)$$

Action of $u\mathbf{e}_n$: free symmetric algebra and $\{x_i, \xi_j\} = \delta_{ij}\mathbf{1}$ \Longrightarrow quadratic-(linear-)constant presentation

Quadratization $qA=S(x_i,\xi_j)$ free symmetric algebra + zero bracket Koszul dual: $A^i=(qA^i,d,\theta)$

- $qA^{i} = S^{c}(\bar{x}_{i}, \bar{\xi}_{j})$ cofree symmetric coalgebra + trivial cobracket
- $\cdot d = 0$
- curvature: $\theta(\bar{x}_i \wedge \bar{\xi}_j) = -\delta_{ij}$.
- \implies "small" resolution $Q_A := \Omega_{\kappa} A^{\mathsf{i}} = (\mathsf{SLS^c}(\bar{\mathsf{X}}_{\mathsf{i}}, \bar{\xi}_{\mathsf{j}}), d) \xrightarrow{\sim} A$

(If we had applied curved KD at the level of operads instead:

$$\Omega_{\kappa}B_{\kappa}A\supset(\underbrace{SL}_{\text{cobar}}\underbrace{S^{c}L^{c}}_{\text{bar}}\underbrace{S(x_{i},\xi_{j})}_{\Delta},d)$$
, + resolution of the unit...)

Computation of $\int_{M} \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n])$

We can also compute

$$\int_{M} \mathscr{O}_{\text{poly}}(T^{*}\mathbb{R}^{d}[1-n]) \simeq \mathsf{LS}_{M} \circ_{\mathsf{ue}_{n}} (\mathsf{SLS}^{\mathsf{c}}(\bar{\mathsf{x}}_{i}, \bar{\xi}_{j}), d)$$

Theorem (I. '18, see also Markarian '17, Döppenschmitt '18)

$$\int_M \mathscr{O}_{\mathrm{poly}}(T^*\mathbb{R}^d[1-n]) \simeq C^{CE}_*(\mathcal{M}^{n-*} \otimes \mathbb{R}\langle 1, x_i, \xi_j \rangle) \simeq \mathbb{R}.$$

Intuition: quantum observable with values in A \leadsto "expectation" lives in $\int_M A$, should be a number.

APPLICATION 2: DERIVED ENVELOPING ALGEBRA

Operad P + P-algebra $A \implies$ notion of A-modules

Examples

 $P = Ass \rightarrow (A,A)$ bimodules; $P = Com \rightarrow A$ -modules; $P = Lie \rightarrow$ representations of the Lie algebra.

 \exists an associative algebra $U_P(A)$ s.t. left $U_P(A)$ -modules = A-modules

Proposition

For $A = \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n])$, the derived enveloping algebra $U_{ue_n}^{\mathbb{L}}(A)$ is q.iso to the underived one.

THANK YOU FOR YOUR ATTENTION!

These slides: https://idrissi.eu