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GOAL

Goal
Find resolutions of “algebras”.

Why?

- Compute derived invariants : derived tensor product, derived
mapping space...

- Define homotopy algebras over operads.

Tool of choice:
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QUADRATIC ALGEBRAS — KOSZUL DUALS

Starting data: quadratic algebraA=T(E)/(R), RCEQE
~ . cofree coalgebra on XE with “corelations” X2R
(Usually easier to understand A" = F(E*)/(R*))

Examples

1. A=T(E), R=0 = A' = E* with trivial multiplication;
2. A=S(E) =T(E)/(xy —yx) = A" =T(E*)/(x*y* +y*x*) = A(E¥).

— = (A®A,d.(Xe) =e);Als if K4 is acyclic
Example

T(E) and S(E) are both Koszul.
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QUADRATIC ALGEBRAS — KOSZUL RESOLUTIONS

Bar/cobar adjunction:
Q : {coaug.coalgebras} = {aug.algebras} : B

where BA = (T¢(X2A), dg) and QC = (T(X71C), dq).
Canonical morphism Q2BA =+ A is always a cofibrant resolution...but big!
A quadratic = 3 canonical morphism QA" — A

Theorem (Priddy '70s)
Ais Koszul < QA — A.

Much smaller resolution!
Examples
A=T(E) = QA =A=T(E) versus QBA = TT°F(E)

A=S(E) = QA =TA(E) versus QBA = TTS(E).
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QLC ALGEBRAS — CURVED KD

Quadratic-linear-constant algebra: A = T (E)/(R) with R C E*2 9 E® R1
Koszul dual Ai = (gAi, dai, 0a): curved dg-coalgebra
r = r(2) —+ I’(l) + I’(O) 1eRC E®2@E@R1.
~ ~ =~
€gR d(l’(z)) 9(/’(2))
- quadratic ~ gA :=T(E)/(gR) where gR := projgez(R);
- linear ~» dg : gAi — gAi Is a coderivation;

- constant ~ @y : gAi — R st. d? = (f ® id Fid ®0)A and 6d = 0.

Example

A =U(g) = uF(g)/(xy —yx = [x,y]) ~ gA =T(g)/(Xy — ¥x) = 5(g)
dgi= coderivation induced by d(x A y) = [x,y] ~ Al = CE(g)
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QLC ALGEBRAS — RESOLUTIONS

Bar/cobar adjunction:
Q) : {curved dg-coalgebras} < {semi.aug.algebras} : B

where BA = (TC(ZA),dQ + d1,9) and Q(C) = (T+(271C), do +dy + do)

Theorem (Polischuck, Positselski)
If gA is Koszul then QA =5 A is a cofibrant resolution.

Example
A=U(g) = gA=S(g) is Koszul = QCtE(g) = U(g).

Goal: do this for more general types of unital algebras.

5/18



OPERADS

What are “more general types of algebras”?

P = {P(n)}n>0: combinatorial object that encodes a type of

algebra.
[ LY
YOO
Examples

The “three graces” Ass = associative algebras; Com = commutative
algebras; Lie = Lie algebras.

E, = homotopy associative and commutative (for n > 2) algebras.

en == H.(En) = Como Lie,, n > 2 = Poisson n-algebras.
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KD FOR QUADRATIC OPERADS

: P=FOp(E)/(R) where E is a generating set of
operations and R C Eo(y) E is a set of quadratic relations.

Example

Com = FOp(u)/(p(u(X,y),2) = p(x, u(y,2))) is quadratic.

Formally similar definitions: Koszul dual cooperad Pi = FOp®(ZE, X:2R)
and its linear dual P' = FOp(E*)/(R™1).

Examples

Ass' = Ass; Com' = Lie, Lie' = Com; e}, = e {—n}.
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KOSzUL RESOLUTIONS FOR QUADRATIC OPERADS

Formally similar definitions: bar/cobar adjunction
Q2 : {coaug.cooperads} < {aug.operads} : B

Canonical morphism QBP = P always a resolution, but very big
Theorem (Ginzburg-Kapranov '94, Getzler-Jones '94, Getzler '95...)
If P is quadratic and ,then Py := QPi — P.

In this case, P,-algebras = “homotopy P-algebras”.

Examples
Ass., = Ay -algebras, Com,, = C,.-algebras, Lie, = L,-algebras...
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BIG RESOLUTION OF OPERADIC ALGEBRAS

P = FOp(E)/(R) Koszul quadratic operad ~ bar/cobar adjunction:
Q, : {coaug. Pi-coalgebras} = {aug. P-algebras} : By,
where Q,.C = (P(X71C), d) and BLA = (Pi(ZA), d).
~- resolution of P-algebras: 2.B.(—), but very big.
Example
For a Lie algebra g, Q.B.g = (L(CSE(g)), d).
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KD FOR MONOGENIC OPERADIC ALGEBRAS

Recall P = FOp(E)/(R).

P-algebras: A=P(V)/(S),S C E(V).
(Monogenic = quadratic for binary P)
Koszul dual: Al := Pi(2V, £2S), A' = P(V*)/(Sh).
Koszul complex: Ka = (A® Al d.(Xv) = V).
Theorem (Millés "12)

If P is quadratic Koszul and if A is a monogenic algebra, then
0,.A = Als a resolution of A.

Examples

P = Ass: recovers the classical Koszul duality of associative algebras.
A: quadratic Com-algebra = U(A") = (Aass)' [Lofwall].
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CURVED KD FOR QLC OPERADS

Operads with QLC relations uP = FOp(E)/(R), R C Eoy E® E @ Rid
Koszul dual cooperad: uPi = (quPi, dai, 0a)
- quadratic ~» quP: “quadratization” of uP;

- linear ~» da : QUPI — quPi coderivation;
- constants ~ O : qUPI — Rid st. d? = (f oid Fidof)A and 6d = 0

Example

uCom = FOp(u, 1)/ (n(n(x,y),2) = uix, u(y,2)), u(*,x) = x)
uComi = (Com @ 1, d =0, O(uc o1 1) = —1)

Bar/cobar extends to the curved setting

Theorem (Hirsh-Millés "12)

If quP is Koszul, then uP, := Q(uPi) — uP: resolution of uP
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SETTING FOR CURVED KD

Consider P = FOp(E)/(R): binary quadratic operad
~ unital version uP =FOp(E® 1)/(R+ R'):

- E<— E® Tinduces P < uP
- qUP=P@!
- R’ has only quadratic-constant terms

Examples
uAss, uCom, cLie, uep...
Algebra with QLC relations A = uP(V)/!:

- lisgenerated by S:=INn(T® V@ E(V))
- Sn(t@eV)=0("Vis minimal")
The second condition is difficult to check!
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CURVED KD FOR ALGEBRAS OVER BINARY UNITAL OPERADS

UP =FOp(E® 1)/(R+ R'): unital version of quadratic P = FOp(E)/(R)
A =uP(V)/(S): algebra w/ QLC relations SC E(V) V@ !

Koszul dual: curved Pi-coalgebra Ai = (gAT, dai, Oai)
- quadratic ~ gA = P(V)/(gS): “quadratization” of A;
- linear ~» dy:: coderivation;

- constant ~» 6 : gAi — R? (+ relations)

Generalization of bar/cobar adjunction:
Q, : {curved Pi-coalgebras} < {semi.aug. uP-algebras} : B,

Theorem (I.’18)

If gA is Koszul then ©,.Ai = A is a resolution.
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APPLICATION 1: FACTORIZATION HOMOLOGY

M: framed n-manifold, A: uE,-algebra (3 version for unframed
manifolds.)

Goal

Compute fy, A = hocolim pnyur.,y AZ.

Theorem (Francis 2015)
Sy A~ = hocoeq(Ey o UE, 0 A = Ey 0 A), where:

UEn(R) = EmbT(R"U---UR", R"); Em(R) = Emb™(R"U---UR", M).
——— —_———
kx Rx

Upshot: data is separated in three + resolution
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CHAINS OF FACTORIZATION HOMOLOGY OVER R

If we work over R and we just want chains:

Ce(fyA) = Cu(Em) OF, g,y Ca(A).
Theorem (Kontsevich '99; Tamarkin '03 (n = 2); Lambrechts-Voli¢ "14;
Petersen "14 (n = 2); Fresse-Willwacher '15)
The operad C,(uEy,) is formal: C,(uE,) ~ ue, :== H.(uE,) = Como Lie,.
Theorem (I.)

M closed, simply connected, smooth, dimM > 4 —
Lambrechts-Stanley model of C.(Ew) as a right C.(uEp)-module:
LSy = CSE(M"* @ Liepy[1 — n]) + action of Com.

Upshot: Cu( [, A) = LSy ol A
— we need to resolve A as a uep-algebra.
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WEYL ALGEBRA 0,1, (T*RI[1 — 1))

A - ﬁPOIY(T*Rd[l - n]) = S(X17 L0 7Xd7£17' > 7€d)

Action of uep: free symmetric algebra and {x;,§;} = ;1
— quadratic-(linear-)constant presentation

Quadratization gA = S(x;, §;) free symmetric algebra + zero bracket
Koszul dual: Ai = (gAi, d, 8)

- gAT = S°(X;,§;) cofree symmetric coalgebra + trivial cobracket
-d=0
- curvature: 9(X; A &) = —4j;.

—> “small” resolution Qa = QA = (SL5°(X;,§;).d) = A

(If we had applied curved KD at the level of operads instead:
Q.BkA D (SL S°LES(x;, &), d), + resolution of the unit...)
~—~—
cobar bar A
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COMPUTATION OF [, Opory (T*RI[1 — n])

We can also compute
/ ﬁpoly(T*Rd[l —n]) ~ LSy oye, (SLSC(Xi,Ej), d)
M

Theorem (1. 18, see also Markarian "17, D6ppenschmitt "18)
Ju Opoty(T*RI[1 — n]) =~ CE(M"™ @ R(1,x;,§)) ~ R.

Intuition: quantum observable with values in A ~ “expectation” lives in
JuA should be a number.
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APPLICATION 2: DERIVED ENVELOPING ALGEBRA

Operad P + P-algebra A = notion of

Examples
P =Ass — (A A) bimodules; P = Com — A-modules; P =Lie —
representations of the Lie algebra.

3 an associative algebra s.t. left Up(A)-modules = A-modules

Proposition

For A = Gyl (T*RY[1 — n]), the derived enveloping algebra Uk, (A) is
g.iso to the underived one.
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THANK YOU FOR YOUR ATTENTION!

These slides: https://idrissi.eu
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