Curved Koszul duality for algebras over unital OPERADS

Najib Idrissi
May 2019 @ Higher Algebras in Topology, MPIM Bonn
宏 Université de Paris

GoAL

Goal

Find resolutions of "algebras".
Why?

- Compute derived invariants : derived tensor product, derived mapping space...
- Define homotopy algebras over operads.

Tool of choice: Koszul duality.

Quadratic algebras - Koszul duals

Starting data: quadratic algebra $A=T(E) /(R), \quad R \subset E \otimes E$
\rightsquigarrow Koszul dual A^{i} : cofree coalgebra on ΣE with "corelations" $\Sigma^{2} R$ (Usually easier to understand $A^{!}=F\left(E^{*}\right) /\left(R^{\perp}\right)$)

Examples

1. $A=T(E), R=0 \Longrightarrow A^{!}=E^{*}$ with trivial multiplication;
2. $A=S(E)=T(E) /(x y-y x) \Longrightarrow A^{!}=T\left(E^{*}\right) /\left(x^{*} y^{*}+y^{*} x^{*}\right)=\Lambda\left(E^{*}\right)$.
\Longrightarrow Koszul complex $K_{A}:=\left(A \otimes A^{i}, d_{\kappa}(\Sigma e)=e\right) ; A$ is Koszul if K_{A} is acyclic

Example

$T(E)$ and $S(E)$ are both Koszul.

Quadratic algebras - Koszul resolutions

Bar/cobar adjunction:

$$
\Omega:\{\text { coaug.coalgebras }\} \leftrightarrows\{\text { aug.algebras }\}: B
$$

where $B A=\left(T^{C}(\Sigma \bar{A}), d_{B}\right)$ and $\Omega C=\left(T\left(\Sigma^{-1} \bar{C}\right), d_{\Omega}\right)$.
Canonical morphism $\Omega B A \xrightarrow{\sim} A$ is always a cofibrant resolution...but big!
A quadratic $\Longrightarrow \exists$ canonical morphism $\Omega A i \rightarrow A$
Theorem (Priddy '70s)
A is Koszul $\Longleftrightarrow \Omega A^{i} \xrightarrow{\sim} A$.
Much smaller resolution!

Examples

$$
\begin{aligned}
& A=T(E) \Longrightarrow \Omega A^{i}=A=T(E) \text { versus } \Omega B A=T T^{c} F(E) \\
& A=S(E) \Longrightarrow \Omega A^{i}=T \Lambda^{c}(E) \text { versus } \Omega B A=T T^{c} S(E) .
\end{aligned}
$$

QLC ALGEBRAS - CURVED KD

Quadratic-linear-constant algebra: $A=T_{+}(E) /(R)$ with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1$
Koszul dual $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$: curved dg-coalgebra

$$
r=\underbrace{r_{(2)}}_{\in q R}+\underbrace{r_{(1)}}_{d\left(r_{(2)}\right)}+\underbrace{r_{(0)}}_{\theta\left(r_{(2)}\right)} 1 \in R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R} 1
$$

- quadratic $\rightsquigarrow q A:=T(E) /(q R)$ where $q R:=\operatorname{proj}_{E_{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: q A^{i} \rightarrow q A^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A^{i}}: q A^{i} \rightarrow \mathbb{R}$ s.t. $d^{2}=(\theta \otimes \mathrm{id} \mp \mathrm{id} \otimes \theta) \Delta$ and $\theta d=0$.

Example

$A=U(\mathfrak{g})=u F(\mathfrak{g}) /(x y-y x-[x, y]) \rightsquigarrow q A=T(\mathfrak{g}) /(x y-y x)=S(\mathfrak{g})$
$d_{A^{i}}=$ coderivation induced by $d(x \wedge y)=[x, y] \rightsquigarrow A^{i}=C_{*}^{C E}(\mathfrak{g})$

QLC ALGEBRAS - RESOLUTIONS

Bar/cobar adjunction:
$\Omega:\{$ curved dg-coalgebras $\} \leftrightarrows$ \{semi.aug.algebras $\}: B$
where $B A=\left(T^{C}(\Sigma \bar{A}), d_{2}+d_{1}, \theta\right)$ and $\Omega(C)=\left(T_{+}\left(\Sigma^{-1} C\right), d_{2}+d_{1}+d_{0}\right)$.
Theorem (Polischuck, Positselski)
If $q A$ is Koszul then $\Omega A^{i} \xrightarrow{\sim} A$ is a cofibrant resolution.
Example
$A=U(\mathfrak{g}) \Longrightarrow q A=S(\mathfrak{g})$ is Koszul $\Longrightarrow \Omega C_{*}^{C E}(\mathfrak{g}) \xrightarrow{\sim} U(\mathfrak{g})$.
Goal: do this for more general types of unital algebras.

OPERADS

What are "more general types of algebras"?
Operad $\mathbf{P}=\{P(n)\}_{n \geq 0}$: combinatorial object that encodes a type of algebra.

Examples

The "three graces": Ass = associative algebras; Com = commutative algebras; Lie = Lie algebras.
$E_{n}=$ homotopy associative and commutative (for $n \geq 2$) algebras. $\mathrm{e}_{n}:=H_{*}\left(\mathrm{E}_{n}\right)=$ Com $\circ \operatorname{Lie}_{n}, n \geq 2$ = Poisson n-algebras.

KD FOR QUADRATIC OPERADS

Quadratic operad: $\mathrm{P}=\mathrm{FOp}(E) /(R)$ where E is a generating set of operations and $R \subset E \circ_{(1)} E$ is a set of quadratic relations.

Example

$\operatorname{Com}=\operatorname{FOp}(\mu) /(\mu(\mu(x, y), z)=\mu(x, \mu(y, z)))$ is quadratic.
Formally similar definitions: Koszul dual cooperad $\mathrm{P}^{\mathrm{i}}=\mathrm{FOp}^{c}\left(\Sigma E, \Sigma^{2} R\right)$ and its linear dual $\mathrm{P}^{!}=\mathrm{FOp}\left(E^{*}\right) /\left(R^{\perp}\right)$.

Examples

Ass ${ }^{!}=$Ass; Com ${ }^{!}=$Lie, Lie ${ }^{!}=$Com; $e_{n}^{!}=\mathrm{e}_{n}\{-n\}$.

KOSZUL RESOLUTIONS FOR QUADRATIC OPERADS

Formally similar definitions: bar/cobar adjunction

$$
\Omega:\{\text { coaug.cooperads }\} \leftrightarrows\{\text { aug.operads }\}: B
$$

Canonical morphism $\Omega \mathrm{BP} \xrightarrow{\sim} \mathrm{P}$ always a resolution, but very big
Theorem (Ginzburg-Kapranov '94, Getzler-Jones '94, Getzler '95...) If P is quadratic and Koszul, then $\mathrm{P}_{\infty}:=\Omega \mathrm{Pi}^{\sim} \xrightarrow{ } \mathrm{P}$.

In this case, P_{∞}-algebras = "homotopy P -algebras".

Examples

Ass $_{\infty}=A_{\infty}$-algebras, Com $_{\infty}=C_{\infty}$-algebras, Lie $\infty_{\infty}=L_{\infty}$-algebras...

BIG RESOLUTION OF OPERADIC ALGEBRAS

$\mathrm{P}=\mathrm{FOp}(E) /(R)$ Koszul quadratic operad $\rightsquigarrow \mathrm{bar} /$ cobar adjunction:
$\Omega_{\kappa}:\left\{\right.$ coaug. Pi^{i} coalgebras $\} \leftrightarrows\{$ aug. P-algebras $\}: B_{\kappa}$,
where $\Omega_{\kappa} C=\left(\mathrm{P}\left(\Sigma^{-1} \bar{C}\right), d\right)$ and $B_{\kappa} A=\left(\mathrm{P}^{\mathrm{i}}(\Sigma \bar{A}), d\right)$.
\rightsquigarrow resolution of P-algebras: $\Omega_{\kappa} B_{\kappa}(-)$, but very big.

Example

For a Lie algebra $\mathfrak{g}, \Omega_{\kappa} B_{\kappa} \mathfrak{g}=\left(L\left(C_{*-1}^{C E}(\mathfrak{g})\right), d\right)$.

KD FOR MONOGENIC OPERADIC ALGEBRAS

Recall $\mathrm{P}=\mathrm{FOp}(E) /(R)$.
Monogenic P-algebras: $A=P(V) /(S), S \subset E(V)$.
(Monogenic = quadratic for binary P)
Koszul dual: $A^{i}:=\mathrm{Pi}\left(\Sigma V, \Sigma^{2} S\right), A^{!}=\mathrm{P}\left(V^{*}\right) /\left(S^{\perp}\right)$.
Koszul complex: $K_{A}=\left(A \otimes A^{i}, d_{\kappa}(\Sigma v)=v\right)$.

Theorem (Millès '12)

If P is quadratic Koszul and if A is a Koszul monogenic algebra, then $\Omega_{\kappa} A^{i} \xrightarrow{\sim} A$ is a resolution of A.

Examples

$\mathrm{P}=$ Ass: recovers the classical Koszul duality of associative algebras.
A: quadratic Com-algebra $\Longrightarrow U\left(A^{!}\right)=\left(A_{\text {Ass }}\right)$! [Löfwall].

CURVED KD FOR QLC operads

Operads with QLC relations $u \mathrm{P}=\mathrm{FOp}(E) /(R), R \subset E \circ_{(1)} E \oplus E \oplus \mathbb{R}$ id Koszul dual curved cooperad: $u \mathrm{P}^{\mathrm{i}}=\left(q u \mathrm{P}^{\mathrm{i}}, d_{A^{i}}, \theta_{\mathrm{A}^{i}}\right)$

- quadratic \rightsquigarrow quP: "quadratization" of $u \mathrm{P}$;
- linear $\rightsquigarrow d_{A i}: q u \mathrm{Pi}^{\mathrm{i}} \rightarrow q u \mathrm{Pi}^{\mathrm{c}}$ coderivation;
- constants $\rightsquigarrow \theta_{A^{i}}: q u \mathrm{P}^{\mathrm{i}} \rightarrow \mathbb{R}$ id s.t. $d^{2}=(\theta \circ \mathrm{id} \mp \mathrm{id} \circ \theta) \Delta$ and $\theta d=0$

Example

uCom $=\operatorname{FOp}(\mu, \bullet) /(\mu(\mu(x, y), z)=\mu(x, \mu(y, z)), \mu(\bullet, x)=x)$
uComi $=\left(\right.$ Comi $\left.^{i} \oplus{ }^{\bullet}, d=0, \theta\left(\mu^{c} \circ_{1}{ }^{\bullet}\right)=-1\right)$

Bar/cobar extends to the curved setting
Theorem (Hirsh-Millès '12)
If quP is Koszul, then $u \mathrm{P}_{\infty}:=\Omega(u \mathrm{Pi}) \xrightarrow{\sim} u \mathrm{P}$: resolution of $u \mathrm{P}$

SEtting for curved KD

Consider $\mathrm{P}=\mathrm{FOp}(E) /(R)$: binary quadratic operad \rightsquigarrow unital version $u \mathbf{P}=\mathrm{FOp}(E \oplus \mathfrak{\bullet}) /\left(R+R^{\prime}\right)$:

- $E \hookrightarrow E \oplus$ • induces $P \hookrightarrow u P$
- quP $\cong \mathrm{P} \oplus$ •
- R^{\prime} has only quadratic-constant terms

Examples

uAss, uCom, cLie, ue $n \ldots$

Algebra with QLC relations $A=u \mathrm{P}(\mathrm{V}) / \mathrm{I}$:

- I is generated by $S:=I \cap(\uparrow \oplus V \oplus E(V))$
- $S \cap(\bullet \oplus V)=0\left({ }^{*} V\right.$ is minimal")

The second condition is difficult to check!

Curved KD for algebras over binary unital operads

$u \mathbf{P}=\mathrm{FOp}(E \oplus \boldsymbol{i}) /\left(R+R^{\prime}\right)$: unital version of quadratic $\mathrm{P}=\mathrm{FOp}(E) /(R)$ $A=u \mathbf{P}(V) /(S)$: algebra w/ QLC relations $S \subset E(V) \oplus V \oplus \boldsymbol{i}$

Koszul dual: curved Pi-coalgebra $A^{i}=\left(q A^{i}, d_{A^{i}}, \theta_{A^{i}}\right)$

- quadratic $\rightsquigarrow q A=P(V) /(q S)$: "quadratization" of A;
- linear $\rightsquigarrow d_{A i}$: coderivation;
- constant $\rightsquigarrow \theta: q A^{i} \rightarrow \mathbb{R}^{\bullet}$ (+ relations)

Generalization of bar/cobar adjunction: $\Omega_{\kappa}:\left\{c u r v e d \mathrm{Pi}^{\text {i-coalgebras }\}} \leftrightarrows\{\right.$ semi.aug. uP-algebras $\}: B_{\kappa}$

Theorem (I. '18)
If $q A$ is Koszul then $\Omega_{\kappa} A^{i} \xrightarrow{\sim} A$ is a resolution.

APPLICATION 1: FACTORIZATION HOMOLOGY

M: framed n-manifold, A : $u E_{n}$-algebra (\exists version for unframed manifolds.)

Goal
Compute $\int_{M} A=\operatorname{hocolim}_{\left(D^{n}\right)^{\sqcup k \hookrightarrow M}} A^{\otimes k}$.
Theorem (Francis 2015)
$\int_{M} A \simeq E_{M} \circ \frac{\mathbb{L}}{E_{n}} A=\operatorname{hocoeq}\left(E_{M} \circ u E_{n} \circ A \rightrightarrows E_{M} \circ A\right)$, where:
$u E_{n}(k)=\operatorname{Emb}^{\mathrm{fr}}(\underbrace{\mathbb{R}^{n} \sqcup \cdots \sqcup \mathbb{R}^{n}}_{k x}, \mathbb{R}^{n}) ; \quad \mathrm{E}_{M}(k)=\operatorname{Emb}^{\mathrm{fr}}(\underbrace{\mathbb{R}^{n} \sqcup \cdots \sqcup \mathbb{R}^{n}}_{k \times}, M)$.

Upshot: data is separated in three + resolution

CHAINS OF FACTORIZATION HOMOLOGY OVER \mathbb{R}

If we work over \mathbb{R} and we just want chains:

$$
C_{*}\left(\int_{M} A\right) \simeq C_{*}\left(\mathrm{E}_{M}\right) \circ \circ_{C_{*}\left(u \mathrm{E}_{n}\right)}^{\mathbb{L}} C_{*}(A) .
$$

Theorem (Kontsevich '99; Tamarkin '03 ($n=2$); Lambrechts-Volić '14; Petersen '14 ($n=2$); Fresse-Willwacher '15)
The operad $C_{*}\left(u E_{n}\right)$ is formal: $C_{*}\left(u E_{n}\right) \simeq u e_{n}:=H_{*}\left(u E_{n}\right)=$ Com $\circ L i e_{n}$.
Theorem (ı.)
M closed, simply connected, smooth, $\operatorname{dim} M \geq 4 \Longrightarrow$ Lambrechts-Stanley model of $C_{*}\left(E_{M}\right)$ as a right $C_{*}\left(u E_{n}\right)$-module:

$$
\mathrm{LS}_{M}=C_{*}^{C E}\left(\mathcal{M}^{n-*} \otimes \operatorname{Lie}_{n}[1-n]\right)+\text { action of Com. }
$$

Upshot: $C_{*}\left(\int_{M} A\right) \simeq L S_{M} \circ \frac{\mathbb{L}}{\mathbb{L e}_{n}} \widetilde{A}$
\Longrightarrow we need to resolve A as a $u e_{n}$-algebra.

WeyL algebra $\mathscr{O}_{\text {poly }}\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

$A=\mathscr{O}_{\text {poly }}\left(T^{*} \mathbb{R}^{d}[1-n]\right)=S\left(x_{1}, \ldots, x_{d}, \xi_{1}, \ldots, \xi_{d}\right)$
Action of $u \mathbf{e}_{n}$: free symmetric algebra and $\left\{x_{i}, \xi_{j}\right\}=\delta_{i j} 1$
\Longrightarrow quadratic-(linear-)constant presentation
Quadratization $q A=S\left(x_{i}, \xi_{j}\right)$ free symmetric algebra + zero bracket
Koszul dual: $A^{i}=\left(q A^{i}, d, \theta\right)$

- $q A^{i}=S^{c}\left(\bar{x}_{i}, \bar{\xi}_{j}\right)$ cofree symmetric coalgebra + trivial cobracket
- $d=0$
- curvature: $\theta\left(\bar{x}_{i} \wedge \bar{\xi}_{j}\right)=-\delta_{i j}$.
\Longrightarrow "small" resolution $Q_{A}:=\Omega_{\kappa} A^{i}=\left(S L S^{c}\left(\bar{x}_{i}, \bar{\xi}_{j}\right), d\right) \xrightarrow{\sim} A$
(If we had applied curved KD at the level of operads instead:
$\Omega_{\kappa} B_{\kappa} A \supset(\underbrace{S L}_{\text {cobar }} \underbrace{S^{C} L^{C}}_{\text {bar }} \underbrace{S\left(x_{i}, \xi_{j}\right)}_{A}, d)$, + resolution of the unit...)

COMPUTATION OF $\int_{M} \mathscr{O}_{\text {poly }}\left(T^{*} \mathbb{R}^{d}[1-n]\right)$

We can also compute

$$
\int_{M} \mathscr{O}_{\text {poly }}\left(T^{*} \mathbb{R}^{d}[1-n]\right) \simeq \operatorname{LS}_{M} \circ_{u e_{n}}\left(S L S^{c}\left(\bar{x}_{i}, \bar{\xi}_{j}\right), d\right)
$$

Theorem (I. '18, see also Markarian '17, Döppenschmitt '18)

$$
\int_{M} \mathscr{O}_{\text {poly }}\left(T^{*} \mathbb{R}^{d}[1-n]\right) \simeq C_{*}^{C E}\left(\mathcal{M}^{n-*} \otimes \mathbb{R}\left\langle 1, x_{i}, \xi_{j}\right\rangle\right) \simeq \mathbb{R} .
$$

Intuition: quantum observable with values in $A \rightsquigarrow$ "expectation" lives in $\int_{M} A$, should be a number.

APPLICATION 2: DERIVED ENVELOPING ALGEBRA

Operad P + P-algebra $A \Longrightarrow$ notion of A-modules

Examples

$\mathrm{P}=$ Ass $\rightarrow(\mathrm{A}, \mathrm{A})$ bimodules; $\mathrm{P}=\mathrm{Com} \rightarrow \mathrm{A}$-modules; $\mathrm{P}=\mathrm{Lie} \rightarrow$ representations of the Lie algebra.
\exists an associative algebra $U_{p}(A)$ s.t. left $U_{p}(A)$-modules $=A$-modules

Proposition

For $A=\mathscr{O}_{\text {poly }}\left(T^{*} \mathbb{R}^{d}[1-n]\right)$, the derived enveloping algebra $U_{u e_{n}}^{\mathbb{L}}(A)$ is q.iso to the underived one.

THANK YOU FOR YOUR ATTENTION!

These slides: https://idrissi.eu

