
THE JOHNSON HOMOMORPHISMS

ADRIEN BROCHIER

1. N-series and associated graded of a f.g. group

Let G be a fintely generated group, and for subgroups A, B ⊂ G let (A, B) be the subgroup
generated by commutators {(a, b), a ∈ A, b ∈ B}.

Definition 1.1. An N series for G is a sequence of subgroups

G = Φ1 ⊃ Φ2 ⊃ Φ3 . . .

such that (Φm, Φn) ⊂ Φm+n.

This implies at once that Φm+1 is normal in G (hence in Φm) and that the quotient Φm/Φm+1

is abelian. The main example of an N-series is the lower central series defined by Γ1 = G and

Γm+1 = (G, Γm).

An N-series is in particular central, so that Γm ⊂ Φm, hence the quotient G/Φm is nilpotent. In
particular, the subset of torsion element is a (normal) subgroup. The rationalization of Φ is

Φm
Q = {x ∈ G, xn ∈ Φm for some n}.

It has the property that G/Φm
Q is the quotient of G/Φm by its torsion subgroup.

Definition 1.2. The associated graded w.r.t the series Φ is

grΦ G =
⊕
m≥1

grm G

where grm
Φ G := Φm/Φm+1. We set gr G := grΓ G.

Proposition 1.3. The commutator induces on grΦ G the structure of a graded Z-Lie algebra. The
inclusion Γm ⊂ Φm induces a graded Lie algebra map

gr G −→ grΦ G.

gr G is generated as a Lie algebra by gr1 G, i.e. the abelianization of G.

Sketch of proof. Let g ∈ G, x ∈ Φm, y, y′ ∈ Φn, z ∈ Φp and for a, b ∈ G set ab = aba−1. Then:

• by defintion, (x, y) ∈ Φm+n and (x, y)g = (x, y) mod ϕm+n+1.
• (x, yy′) = (x, y)(x, y′)y so the commutator descends to a bilinear map

grm G× grn G −→ grm+n

• the Hall-Witt identity

((x, y) , zx) ((z, x), yz) ((y, z), xy) = 1

implies Jacobi.
□

Warning 1.4. The map
gr G −→ grΦ G

is neither injective or surjective in general, although it’s obviously surjective in degree 1.
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Theorem 1.5 (Magnus). The associated graded ot the free group on n generators is the free Lie algebra
on n generators. In particular, if π = π1(Sg,1) and if ai, bi is a symplectic basis of H1(Sg,1), then gr π
is the free Lie algebra on ai, bi.

The associated graded of π1(Sg) is the quotient of the former by the relation

∑[ai, bi] = 0.

2. Johnson homomorphisms

Let A be a subgroup of Aut(G). Since Γm is characteristic, there is a morphism

A −→ Aut(G/Γm).

Definition 2.1. The Johnson filtration is defined by:

Jm := ker(A −→ Aut(G/Γm+1)).

The Torelli group of A is TA := J1, a normal subgroup of A. The symmetry group of TA is A0 = A/TA.

Proposition 2.2 (Kaloujnine). J is an N series on TA.

For a graded Lie algebra g, let Der+(g) be the Lie algebra of positive derivations

Der+(g) :=
⊕
m≥1

Derm(g)

where Derm(g) is the space of derivations of g which maps gn to gn+m. Note this Lie algebra is
itself graded. The following is an infinitesimal analog of the action of TA on G:

Theorem 2.3 (Johnson, Papadima). There is a well-defined, injective map of graded Lie algebra

τ : grJ(TA) ↪→ Der+(gr G)

called the Johson homomorphism, defined as follow: let a ∈ Jm, x ∈ Γn, then

ā · x̄ := a(x)x−1.

Sketch of proof. Let a ∈ Jm, x ∈ Γn. First we claim that

a(x) ≡ x mod Γm+n.

For n = 1 this is the definition, for n ≥ 1 this is proved by induction. Therefore,

a(x)x−1 ∈ Γm+n.

Composing with the quotient map we get a map

Γn −→ grm+n G.

For x, y in Γn, a direct computation shows that

a(xy)(xy)−1 ≡ (a(x)x−1)(a(y)y−1) mod Γm+n+1

hence this descends to an additive map

grn G −→ grm+n G.

By definition this map is the identity iff

∀x ∈ Γn, a(x)x−1 ∈ Γm+n+1.

For n = 1 this says precisely that a ∈ Jm+1, and conversly every map in Jm+1 satisfies this for all
n. Hence this map is injective. The fact that a is a derivation, and that this map is a Lie algebra
map follows from painful commutator computations. □

Remark 2.4. In a way the Johnson filtration is tailor made to make this map injective (it generally
isn’t for the lower central series).
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The action of A on TA by conjugation descends, essentially by construction, to an action of
A0 on grJ(TA) by graded Lie algebra automorphisms: for a ∈ A, x ∈ TA,

ā · x̄ := axa−1.

Likewise, it acts on gr G by
ā · x̄ := a(x),

hence on Der(gr G) by the adjoint action:

ā · d := ā ◦ d ◦ ā−1

where ◦ is composition of endomorphisms.

Proposition 2.5. The Johnson homomorphism is A0-equivariant.

3. Application to the actual Torelli groups

Let S = Sg,1 with a point ⋆ marked on the boundary and let π = π1(S, ⋆). Let ai, bi be a
symplectic basis of H = H1(S) and let ω = ∑ ai ∧ bi the bivector associated with the symplectic
form. Let ζ = [∂S] ∈ π and recall the following classical

Theorem 3.1 (Dehn). The natural map

Mod(S) −→ Aut(π)

is injective, and its image is the subgroup of automorphisms which fix ζ.

Identifying Mod(S) with its image, the associated Torelli group in the sense of the previous
section is the usual Torelli group T, and the symmetry group A0 is Sp(H).

Remark 3.2. One striking illustration of how useful it is to “linearize” T in this way is that, as a
consequence of a highly non-trivial theorem of Hain, we know that the Lie algebra Q⊗ gr T is
finitely presented (with an explicit presentation) for g ≥ 6.

Remark 3.3. Since Der+(gr π) is torsion-free, and since grJ T embeds into it, it is torsion free as
well, which means that

Jm = Jm
Q

and that
Γm

Q(T) ⊂ Jm.
On the other hand, it is known that the abelianization of T has torsion so the map

gr T −→ grJ T

is already not injective in degree 1, i.e.
Γ2 ⊊ J2.

Johnson’s theorem below implies however that Γ2
Q(T) = J2. One might hope this is true for

m ≥ 3, but it’s not: Hain has shown that the kernel of

Γ2
Q(T)/Γ3

Q(T) −→ J2/J3

is isomorphic to Z.

Remark 3.4. It’s well known that for finitely generated free groups, one has⋂
m≥1

Γm
Q = {1}

i.e. those are residually torsion-free-nilpotent. It implies at once that in the Torelli group⋂
m≥1

Jm = {1}

Since Γm
Q(T) ⊂ Jm, T is itself residually-torsion-free nilpotent. This has cool consequences: it is

in particular torsion free and residually nilpotent (but this is much stronger), residually p for all
p, residually finite and bi-orderable.
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Remark 3.5. One can check that the Johnson homomorphism in that case actually lands in the
Lie algebra of symplectic derivations, i.e. those mapping

ω = ∑ ai ∧ bi ∈ H ⊂ gr π

to 0. This is the infinitesimal counterpart of the fact that the mapping class group action on π
preserves ζ.

Recall that T is generated by bounding pairs, i.e. elements of the form TαT−1
β where Tα

is the Dehn twist along α and α, β are disjoint non-separating simple closed curves such that
[α] = [β] ̸= 0. Recall also that if γ is a bounding simple closed loop then Tγ ∈ T.

Theorem 3.6 (Johnson). The images of the elements Tγ, γ a bounding simple closed curve, in H1(T)
are 2-torsion, hence their image through τ1 is 0. In fact they generate the kernel of the lift

T −→ Der1(gr π).

Theorem 3.7 (Johnson). Let S′ be the component of S\(α ∪ β) which doesn’t contain the base point.
Let k be the genus of S′ and let {ai, bi} be a symplectic basis of H such that [α] = [ak+1], and such that
{a1, b1, . . . , ak, bk, ak+1} is a basis of H1(S′). Then

τ1( f ) = (
k

∑
i=1

ai ∧ bi) ∧ ak+1.

Since the Lie bracket is antisymmetric, and since there is no Jacobi relation in degree 2, the
free Z-module gr2 π can be identified with ∧2H. Therefore any linear map H → ∧2H extends
uniquely to a degree 1 derivation of gr π, and using the symplectic form on H to identify
H ∼= H∗, we get an Sp(H)-equivariant embedding

∧3H ↪→ H ⊗∧2H ∼= H∗ ⊗∧2H ∼= Der1(gr π).

Theorem 3.8 (Johnson). The first Johnson homomorphism

τ1 : H1(T) −→ Der1(gr π)

lands in ∧3H, and induces an isomorphism

H1(T, Q) ∼= ∧3H ⊗Q.

It descends to an isomorphism

H1(Tg, Q) ∼= (∧3H ⊗Q)/⟨h ∧ω, h ∈ H⟩
where Tg is the Torelli group of the closed surface Sg and πg its fundamental group.

4. Geometric Johnson homomorphisms

4.1. Abel–Jacobi map. Let T be the complex torus Cg/Z2g. Since this is a K(Z2g, 1), the abeli-
nanization map π → Z2g determines a unique homotopy class of maps

S −→ T.

The Abel–Jacobi map can be thought of as a way of picking representatives in that homotopy
class in a way that interacts well with the action of T, by using complex structures on S. Fix once
and for all a surface S̄ obtained by gluing a disc to the boundary of S and fix a marked point
inside that disc with a unit tangent vector at it. By a complex structure on S we’ll mean a pair of
a marked compact Riemann surface C and of a diffeomorphism h : C ∼−→ S̄ which preserves the
basepoint and its tangent vector. Two complex structures (C, h) and (C′, h′) on S are isotopic if
h−1 ◦ h′ is isotopic (rel. basepoint and tangent vector) to a holomorphic diffeomorphism.

Recall that the cotangent bundle of C has a canonical holomorphic structure, called the canon-
ical line bundle K, so that global sections H0(C, K) are identified with holomorphic one forms
on C. It is well-known that this space is isomorphic as a real vector space to H1(S̄, R).
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If α is such a form, and γ a path on C, define∫
γ

α :=
∫ 1

0
γ∗α ∈ C.

Integration of forms gives a non-degenerate pairing

H1(C, C)× H0(C, K) −→ C,

hence an embedding H1(C) ⊂ H0(C, K)∗.

Definition 4.1. The Jacobian of C is J(C) := H0(C, K)∗/H1(C). The choice of a symplectic basis of H1
induces an identification J(C) ∼= T. The Abel–Jacobi map

J : C −→ J(C)

is defined for y ∈ C by picking a path γ from the marked point to y, and mapping y to

α 7→
∫

γ
α.

Note that if γ′ is another path to y, then
∫

γ−1γ′ α is 0 in J(C), hence this is well-defined. It’s
also clear that this map induces the abelianization of π.

4.2. Bundles over the Torelli space. Let Teich be the Teichmüller space, whose points are sotopy
classes of complex structures on S as above. An important fact about

Theorem 4.2. The space Teich is homeomorphic to R6g−3 and carries a free action of the Torelli group
T.

Definition 4.3. The Torelli space T is the quotient Teich /T.

A point in T is thus a pair (a diffeomorphism class of complex structures on S, a symplectic
basis of H1(S)). Note it carries a residual action of Sp by changing the basis. It follows from the
theorem that T is a K(T, 1), hence we have:

H∗(T ) ∼= H∗(T).

Let T ∗ = (S× Teich)/T and let
p : T ∗ −→ T

be the projection. This is the homotopy quotient of S by T, i.e. it is the universal fiber bundle
over T with fiber over any point identified with S. Let now J ∗ be the trivial bundle

(T× Teich)/T −→ T

where T acts on T trivially (hence this is indeed a trivial bundle). Fixing once and for all a
symplectic basis of H1(S), for any (C, h) ∈ Teich, using h this canonically fixes an identification
J(C) ≃ T. Therefore the Abel-Jacobi maps assemble into a map

S× Teich −→ T× Teich

which is clearly T-equivariant, since by construction the action of T preserves any choice of a
symplectic basis of H1(S). In other words, we get an Sp-equivariant bundle map

T ∗ −→ J ∗.

Composing this map with the projection J ∗ → T we get an Sp-equivariant diagram

T ←− T ∗ −→ T.

Definition 4.4. Let f : M −→ N be a smooth map between compact oriented manifolds of dimensions
m + k and m respectively. The pull-back along f in homology is the composition

f ∗ : Hi(N)
Poincaré duality−−−−−−−−→ Hm−i(N)

pull-back along f−−−−−−−−→ Hm−i(M)
Poincaré duality−−−−−−−−→ Hi+k(M).
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Definition 4.5. Let n = 6g − 3 and 1 ≤ i ≤ n. The ith geometric Johnson homomorphism is the
composition

τ′i : Hi(T , Q)
p∗−−→ Hi+2(T ∗, Q) −→ Hi+2(T, Q) ∼=

i+2∧
HQ.

Theorem 4.6 (Johnson, Church–Farb). τ′1 = τ1.

4.3. Mapping tori and τ′1. There is a fun way to compute τ1 = τ′1 this way which bypass the
use of pull-back in homology. Let σ ∈ Hi(T ). Suppose we are given a map B −→ T and a class
x ∈ Hi(B) whose image in Hi(T is σ.

Let f be a diffeomorphism of S lifting an element of T and fix a basepoint x ∈ T . By definition
f induces a loop in T , i.e. a map γ : S1 −→ T . We can then form the pull-back bundle, whose
total space is

M f = {(x, t) ∈ T ∗ × S1 | p(x) = γ(t)}.
Note that this is nothing but the mapping torus of f . Since f acts trivially on H1(S), there is a
canonical decompositionto be con-

tinued.. H1(M f ) = H1(S)× H1(S1).
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