THE JOHNSON HOMOMORPHISMS

ADRIEN BROCHIER

1. N-series and associated graded of a f.g. group

Let *G* be a fintely generated group, and for subgroups $A, B \subset G$ let (A, B) be the subgroup generated by commutators $\{(a, b), a \in A, b \in B\}$.

Definition 1.1. An N series for G is a sequence of subgroups

$$G = \Phi^1 \supset \Phi^2 \supset \Phi^3 \dots$$

such that $(\Phi^m, \Phi^n) \subset \Phi^{m+n}$.

This implies at once that Φ^{m+1} is normal in *G* (hence in Φ^m) and that the quotient Φ^m/Φ^{m+1} is abelian. The main example of an *N*-series is the lower central series defined by $\Gamma^1 = G$ and

$$\Gamma^{m+1} = (G, \Gamma^m).$$

An *N*-series is in particular central, so that $\Gamma^m \subset \Phi^m$, hence the quotient G/Φ^m is nilpotent. In particular, the subset of torsion element is a (normal) subgroup. The rationalization of Φ is

$$\Phi_{\Omega}^{m} = \{ x \in G, x^{n} \in \Phi^{m} \text{ for some } n \}.$$

It has the property that G/Φ_Q^m is the quotient of G/Φ^m by its torsion subgroup.

Definition 1.2. The associated graded w.r.t the series Φ is

$$\operatorname{gr}^{\Phi} G = \bigoplus_{m \ge 1} \operatorname{gr}^m G$$

where $\operatorname{gr}_{\Phi}^{m} G := \Phi^{m} / \Phi^{m+1}$. We set $\operatorname{gr} G := \operatorname{gr}_{\Gamma} G$.

Proposition 1.3. The commutator induces on $\operatorname{gr}_{\Phi} G$ the structure of a graded \mathbb{Z} -Lie algebra. The inclusion $\Gamma^m \subset \Phi^m$ induces a graded Lie algebra map

$$\operatorname{gr} G \longrightarrow \operatorname{gr}_{\Phi} G.$$

gr G is generated as a Lie algebra by $gr_1 G$, i.e. the abelianization of G.

Sketch of proof. Let $g \in G$, $x \in \Phi^m$, $y, y' \in \Phi^n$, $z \in \Phi^p$ and for $a, b \in G$ set $a^b = aba^{-1}$. Then:

- by definition, $(x, y) \in \Phi^{m+n}$ and $(x, y)^g = (x, y) \mod \phi^{m+n+1}$.
- $(x, yy') = (x, y)(x, y')^y$ so the commutator descends to a bilinear map

$$\operatorname{gr}^m G \times \operatorname{gr}^n G \longrightarrow \operatorname{gr}^{m+n}$$

• the Hall-Witt identity

$$((x, y), z^{x})((z, x), y^{z})((y, z), x^{y}) = 1$$

implies Jacobi.

Warning 1.4. The map

$$\operatorname{gr} G \longrightarrow \operatorname{gr}_{\Phi} G$$

is neither injective or surjective in general, although it's obviously surjective in degree 1.

ADRIEN BROCHIER

Theorem 1.5 (Magnus). The associated graded of the free group on *n* generators is the free Lie algebra on *n* generators. In particular, if $\pi = \pi_1(S_{g,1})$ and if a_i, b_i is a symplectic basis of $H_1(S_{g,1})$, then $\operatorname{gr} \pi$ is the free Lie algebra on a_i, b_i .

The associated graded of $\pi_1(S_g)$ is the quotient of the former by the relation

$$\sum [a_i, b_i] = 0$$

2. Johnson homomorphisms

Let *A* be a subgroup of Aut(*G*). Since Γ^m is characteristic, there is a morphism

$$A \longrightarrow \operatorname{Aut}(G/\Gamma^m).$$

Definition 2.1. *The Johnson filtration is defined by:*

$$^{m} := \ker(A \longrightarrow \operatorname{Aut}(G/\Gamma^{m+1})).$$

The Torelli group of A is $T_A := J^1$, a normal subgroup of A. The symmetry group of T_A is $A_0 = A/T_A$.

Proposition 2.2 (Kaloujnine). *J* is an *N* series on T_A .

For a graded Lie algebra \mathfrak{g} , let $\text{Der}^+(\mathfrak{g})$ be the Lie algebra of positive derivations

$$\operatorname{Der}^+(\mathfrak{g}) := \bigoplus_{m \ge 1} \operatorname{Der}^m(\mathfrak{g})$$

where $\text{Der}^{m}(\mathfrak{g})$ is the space of derivations of \mathfrak{g} which maps \mathfrak{g}^{n} to \mathfrak{g}^{n+m} . Note this Lie algebra is itself graded. The following is an infinitesimal analog of the action of T_A on G:

Theorem 2.3 (Johnson, Papadima). There is a well-defined, injective map of graded Lie algebra

$$\tau: \operatorname{gr}_I(T_A) \hookrightarrow \operatorname{Der}^+(\operatorname{gr} G)$$

called the Johson homomorphism, defined as follow: let $a \in J^m$, $x \in \Gamma^n$, then

$$\bar{a} \cdot \bar{x} := \overline{a(x)x^{-1}}.$$

Sketch of proof. Let $a \in J^m$, $x \in \Gamma^n$. First we claim that

$$a(x) \equiv x \mod \Gamma^{m+n}$$
.

For n = 1 this is the definition, for $n \ge 1$ this is proved by induction. Therefore,

$$a(x)x^{-1} \in \Gamma^{m+n}$$
.

Composing with the quotient map we get a map

$$\Gamma^n \longrightarrow \operatorname{gr}^{m+n} G.$$

For *x*, *y* in Γ^n , a direct computation shows that

$$a(xy)(xy)^{-1} \equiv (a(x)x^{-1})(a(y)y^{-1}) \mod \Gamma^{m+n+1}$$

hence this descends to an additive map

$$\operatorname{gr}^n G \longrightarrow \operatorname{gr}^{m+n} G.$$

By definition this map is the identity iff

$$\forall x \in \Gamma^n, a(x)x^{-1} \in \Gamma^{m+n+1}.$$

For n = 1 this says precisely that $a \in J^{m+1}$, and conversely every map in J^{m+1} satisfies this for all n. Hence this map is injective. The fact that a is a derivation, and that this map is a Lie algebra map follows from painful commutator computations.

Remark 2.4. In a way the Johnson filtration is tailor made to make this map injective (it generally isn't for the lower central series).

The action of *A* on T_A by conjugation descends, essentially by construction, to an action of A_0 on $gr_I(T_A)$ by graded Lie algebra automorphisms: for $a \in A$, $x \in T_A$,

$$\bar{a} \cdot \bar{x} := \overline{axa^{-1}}.$$

Likewise, it acts on gr *G* by

$$\bar{a}\cdot\bar{x}:=a(x),$$

hence on Der(gr G) by the adjoint action:

$$\bar{a} \cdot d := \bar{a} \circ d \circ \bar{a}^{-1}$$

where \circ is composition of endomorphisms.

Proposition 2.5. The Johnson homomorphism is A_0 -equivariant.

3. Application to the actual Torelli groups

Let $S = S_{g,1}$ with a point \star marked on the boundary and let $\pi = \pi_1(S, \star)$. Let a_i, b_i be a symplectic basis of $H = H_1(S)$ and let $\omega = \sum a_i \wedge b_i$ the bivector associated with the symplectic form. Let $\zeta = [\partial S] \in \pi$ and recall the following classical

Theorem 3.1 (Dehn). *The natural map*

$$Mod(S) \longrightarrow Aut(\pi)$$

is injective, and its image is the subgroup of automorphisms which fix ζ .

Identifying Mod(S) with its image, the associated Torelli group in the sense of the previous section is the usual Torelli group *T*, and the symmetry group A_0 is Sp(H).

Remark 3.2. One striking illustration of how useful it is to "linearize" *T* in this way is that, as a consequence of a highly non-trivial theorem of Hain, we know that the Lie algebra $\mathbb{Q} \otimes \operatorname{gr} T$ is finitely presented (with an explicit presentation) for $g \ge 6$.

Remark 3.3. Since $\text{Der}^+(\text{gr}\,\pi)$ is torsion-free, and since $\text{gr}_J T$ embeds into it, it is torsion free as well, which means that $J^m = J^m_\Omega$

and that

$$\Gamma^m_{\mathbb{Q}}(T) \subset J^m.$$

On the other hand, it is known that the abelianization of *T* has torsion so the map

$$\operatorname{gr} T \longrightarrow \operatorname{gr}_I T$$

is already not injective in degree 1, i.e.

$$\Gamma^2 \subsetneq J^2$$
.

Johnson's theorem below implies however that $\Gamma^2_Q(T) = J^2$. One might hope this is true for $m \ge 3$, but it's not: Hain has shown that the kernel of

$$\Gamma^2_{\mathbb{O}}(T)/\Gamma^3_{\mathbb{O}}(T) \longrightarrow J^2/J^3$$

is isomorphic to \mathbb{Z} .

Remark 3.4. It's well known that for finitely generated free groups, one has

$$\bigcap_{m\geq 1}\Gamma^m_{\mathbb{Q}}=\{1\}$$

i.e. those are residually torsion-free-nilpotent. It implies at once that in the Torelli group

$$\bigcap_{m\geq 1}J^m=\{1\}$$

Since $\Gamma_Q^m(T) \subset J^m$, *T* is itself residually-torsion-free nilpotent. This has cool consequences: it is in particular torsion free and residually nilpotent (but this is much stronger), residually *p* for all *p*, residually finite and bi-orderable.

Remark 3.5. One can check that the Johnson homomorphism in that case actually lands in the Lie algebra of symplectic derivations, i.e. those mapping

$$\omega = \sum a_i \wedge b_i \in H \subset \operatorname{gr} \pi$$

to 0. This is the infinitesimal counterpart of the fact that the mapping class group action on π preserves ζ .

Recall that *T* is generated by bounding pairs, i.e. elements of the form $T_{\alpha}T_{\beta}^{-1}$ where T_{α} is the Dehn twist along α and α, β are disjoint non-separating simple closed curves such that $[\alpha] = [\beta] \neq 0$. Recall also that if γ is a bounding simple closed loop then $T_{\gamma} \in T$.

Theorem 3.6 (Johnson). The images of the elements T_{γ} , γ a bounding simple closed curve, in $H_1(T)$ are 2-torsion, hence their image through τ_1 is 0. In fact they generate the kernel of the lift

$$T \longrightarrow \operatorname{Der}^1(\operatorname{gr} \pi).$$

Theorem 3.7 (Johnson). Let S' be the component of $S \setminus (\alpha \cup \beta)$ which doesn't contain the base point. Let k be the genus of S' and let $\{a_i, b_i\}$ be a symplectic basis of H such that $[\alpha] = [a_{k+1}]$, and such that $\{a_1, b_1, \ldots, a_k, b_k, a_{k+1}\}$ is a basis of $H_1(S')$. Then

$$\tau_1(f) = \left(\sum_{i=1}^k a_i \wedge b_i\right) \wedge a_{k+1}.$$

Since the Lie bracket is antisymmetric, and since there is no Jacobi relation in degree 2, the free \mathbb{Z} -module gr₂ π can be identified with $\wedge^2 H$. Therefore any linear map $H \to \wedge^2 H$ extends uniquely to a degree 1 derivation of gr π , and using the symplectic form on H to identify $H \cong H^*$, we get an Sp(H)-equivariant embedding

$$\wedge^3 H \hookrightarrow H \otimes \wedge^2 H \cong H^* \otimes \wedge^2 H \cong \operatorname{Der}^1(\operatorname{gr} \pi).$$

Theorem 3.8 (Johnson). The first Johnson homomorphism

$$\tau_1: H_1(T) \longrightarrow \operatorname{Der}^1(\operatorname{gr} \pi)$$

lands in $\wedge^{3}H$, and induces an isomorphism

$$H_1(T,\mathbb{Q})\cong \wedge^3 H\otimes \mathbb{Q}.$$

It descends to an isomorphism

$$H_1(T_g, \mathbb{Q}) \cong (\wedge^3 H \otimes \mathbb{Q}) / \langle h \wedge \omega, h \in H \rangle$$

where T_g is the Torelli group of the closed surface S_g and π_g its fundamental group.

4. Geometric Johnson homomorphisms

4.1. **Abel–Jacobi map.** Let **T** be the complex torus $\mathbb{C}^g / \mathbb{Z}^{2g}$. Since this is a $K(\mathbb{Z}^{2g}, 1)$, the abelinanization map $\pi \to \mathbb{Z}^{2g}$ determines a unique homotopy class of maps

$$S \longrightarrow \mathbb{T}$$
.

The Abel–Jacobi map can be thought of as a way of picking representatives in that homotopy class in a way that interacts well with the action of *T*, by using complex structures on *S*. Fix once and for all a surface \overline{S} obtained by gluing a disc to the boundary of *S* and fix a marked point inside that disc with a unit tangent vector at it. By a complex structure on *S* we'll mean a pair of a marked compact Riemann surface *C* and of a diffeomorphism $h : C \xrightarrow{\sim} \overline{S}$ which preserves the basepoint and its tangent vector. Two complex structures (C, h) and (C', h') on *S* are isotopic if $h^{-1} \circ h'$ is isotopic (rel. basepoint and tangent vector) to a holomorphic diffeomorphism.

Recall that the cotangent bundle of *C* has a canonical holomorphic structure, called the canonical line bundle *K*, so that global sections $H^0(C, K)$ are identified with holomorphic one forms on *C*. It is well-known that this space is isomorphic as a real vector space to $H^1(\bar{S}, \mathbb{R})$.

If α is such a form, and γ a path on *C*, define

$$\int_{\gamma} \alpha := \int_0^1 \gamma^* \alpha \in \mathbb{C}.$$

Integration of forms gives a non-degenerate pairing

$$H_1(C,\mathbb{C}) \times H^0(C,K) \longrightarrow \mathbb{C},$$

hence an embedding $H_1(C) \subset H^0(C, K)^*$.

Definition 4.1. The Jacobian of C is $J(C) := H^0(C, K)^* / H_1(C)$. The choice of a symplectic basis of H_1 induces an identification $J(C) \cong \mathbb{T}$. The Abel–Jacobi map

$$J: C \longrightarrow J(C)$$

is defined for $y \in C$ by picking a path γ from the marked point to y, and mapping y to

$$\alpha\mapsto\int_{\gamma}\alpha.$$

Note that if γ' is another path to y, then $\int_{\gamma^{-1}\gamma'} \alpha$ is 0 in J(C), hence this is well-defined. It's also clear that this map induces the abelianization of π .

4.2. **Bundles over the Torelli space.** Let Teich be the Teichmüller space, whose points are sotopy classes of complex structures on *S* as above. An important fact about

Theorem 4.2. The space Teich is homeomorphic to \mathbb{R}^{6g-3} and carries a free action of the Torelli group *T*.

Definition 4.3. *The Torelli space* T *is the quotient* Teich */T.*

A point in \mathcal{T} is thus a pair (a diffeomorphism class of complex structures on *S*, a symplectic basis of $H_1(S)$). Note it carries a residual action of Sp by changing the basis. It follows from the theorem that \mathcal{T} is a K(T, 1), hence we have:

$$H_*(\mathcal{T}) \cong H_*(\mathcal{T}).$$

Let $\mathcal{T}^* = (S \times \text{Teich})/T$ and let

$$p:\mathcal{T}^*\longrightarrow\mathcal{T}$$

be the projection. This is the homotopy quotient of *S* by *T*, i.e. it is the universal fiber bundle over \mathcal{T} with fiber over any point identified with *S*. Let now \mathcal{J}^* be the trivial bundle

$$(\mathbb{T} \times \text{Teich})/T \longrightarrow \mathcal{T}$$

where *T* acts on **T** trivially (hence this is indeed a trivial bundle). Fixing once and for all a symplectic basis of $H_1(S)$, for any $(C, h) \in$ Teich, using *h* this canonically fixes an identification $J(C) \simeq \mathbb{T}$. Therefore the Abel-Jacobi maps assemble into a map

$$S imes$$
 Teich $\longrightarrow \mathbb{T} imes$ Teich

which is clearly *T*-equivariant, since by construction the action of *T* preserves any choice of a symplectic basis of $H_1(S)$. In other words, we get an Sp-equivariant bundle map

$$\mathcal{T}^* \longrightarrow \mathcal{J}^*$$

Composing this map with the projection $\mathcal{J}^* \to \mathbb{T}$ we get an Sp-equivariant diagram

$$\mathcal{T} \longleftarrow \mathcal{T}^* \longrightarrow \mathbb{T}.$$

Definition 4.4. Let $f : M \longrightarrow N$ be a smooth map between compact oriented manifolds of dimensions m + k and m respectively. The pull-back along f in homology is the composition

$$f^*: H_i(N) \xrightarrow{Poincaré \ duality} H^{m-i}(N) \xrightarrow{pull-back \ along \ f} H^{m-i}(M) \xrightarrow{Poincaré \ duality} H_{i+k}(M).$$

ADRIEN BROCHIER

Definition 4.5. Let n = 6g - 3 and $1 \le i \le n$. The *i*th geometric Johnson homomorphism is the composition

$$\tau'_i: H_i(\mathcal{T}, \mathbb{Q}) \xrightarrow{p^*} H_{i+2}(\mathcal{T}^*, \mathbb{Q}) \longrightarrow H_{i+2}(\mathbb{T}, \mathbb{Q}) \cong \bigwedge^{i+2} H_{\mathbb{Q}}.$$

Theorem 4.6 (Johnson, Church–Farb). $\tau'_1 = \tau_1$.

4.3. **Mapping tori and** τ'_1 . There is a fun way to compute $\tau_1 = \tau'_1$ this way which bypass the use of pull-back in homology. Let $\sigma \in H_i(\mathcal{T})$. Suppose we are given a map $B \longrightarrow \mathcal{T}$ and a class $x \in H_i(B)$ whose image in $H_i(T \text{ is } \sigma$.

Let f be a diffeomorphism of S lifting an element of T and fix a basepoint $x \in \mathcal{T}$. By definition f induces a loop in \mathcal{T} , i.e. a map $\gamma : S^1 \longrightarrow \mathcal{T}$. We can then form the pull-back bundle, whose total space is

$$M_f = \{ (x,t) \in \mathcal{T}^* \times S^1 \mid p(x) = \gamma(t) \}.$$

Note that this is nothing but the mapping torus of f. Since f acts trivially on $H_1(S)$, there is a canonical decomposition

$$H_1(M_f) = H_1(S) \times H_1(S^1).$$

Email address: adrien.brochier@imj-prg.fr

6

to be con-

tinued..