THE JOHNSON HOMOMORPHISMS

ADRIEN BROCHIER

1. N-SERIES AND ASSOCIATED GRADED OF A F.G. GROUP

Let G be a fintely generated group, and for subgroups $A, B \subset G$ let (A, B) be the subgroup generated by commutators $\{(a, b), a \in A, b \in B\}$.

Definition 1.1. An N series for G is a sequence of subgroups

$$
G=\Phi^{1} \supset \Phi^{2} \supset \Phi^{3} \ldots
$$

such that $\left(\Phi^{m}, \Phi^{n}\right) \subset \Phi^{m+n}$.
This implies at once that Φ^{m+1} is normal in G (hence in Φ^{m}) and that the quotient Φ^{m} / Φ^{m+1} is abelian. The main example of an N-series is the lower central series defined by $\Gamma^{1}=G$ and

$$
\Gamma^{m+1}=\left(G, \Gamma^{m}\right) .
$$

An N-series is in particular central, so that $\Gamma^{m} \subset \Phi^{m}$, hence the quotient G / Φ^{m} is nilpotent. In particular, the subset of torsion element is a (normal) subgroup. The rationalization of Φ is

$$
\Phi_{\mathbf{Q}}^{m}=\left\{x \in G, x^{n} \in \Phi^{m} \text { for some } n\right\} .
$$

It has the property that $G / \Phi_{\mathrm{Q}}^{m}$ is the quotient of G / Φ^{m} by its torsion subgroup.
Definition 1.2. The associated graded w.r.t the series Φ is

$$
\operatorname{gr}^{\Phi} G=\bigoplus_{m \geq 1} \operatorname{gr}^{m} G
$$

where $\operatorname{gr}_{\Phi}^{m} G:=\Phi^{m} / \Phi^{m+1}$. We set $\operatorname{gr} G:=\operatorname{gr}_{\Gamma} G$.
Proposition 1.3. The commutator induces on $\mathrm{gr}_{\Phi} G$ the structure of a graded \mathbb{Z}-Lie algebra. The inclusion $\Gamma^{m} \subset \Phi^{m}$ induces a graded Lie algebra map

$$
\operatorname{gr} G \longrightarrow \operatorname{gr}_{\Phi} G
$$

$\mathrm{gr} G$ is generated as a Lie algebra by $\mathrm{gr}_{1} G$, i.e. the abelianization of G.
Sketch of proof. Let $g \in G, x \in \Phi^{m}, y, y^{\prime} \in \Phi^{n}, z \in \Phi^{p}$ and for $a, b \in G$ set $a^{b}=a b a^{-1}$. Then:

- by defintion, $(x, y) \in \Phi^{m+n}$ and $(x, y)^{g}=(x, y) \bmod \phi^{m+n+1}$.
- $\left(x, y y^{\prime}\right)=(x, y)\left(x, y^{\prime}\right)^{y}$ so the commutator descends to a bilinear map

$$
\mathrm{gr}^{m} G \times \mathrm{gr}^{n} G \longrightarrow \mathrm{gr}^{m+n}
$$

- the Hall-Witt identity

$$
\left((x, y), z^{x}\right)\left((z, x), y^{z}\right)\left((y, z), x^{y}\right)=1
$$

implies Jacobi.

Warning 1.4. The map

$$
\operatorname{gr} G \longrightarrow \operatorname{gr}_{\Phi} G
$$

is neither injective or surjective in general, although it's obviously surjective in degree 1.

Theorem 1.5 (Magnus). The associated graded ot the free group on n generators is the free Lie algebra on n generators. In particular, if $\pi=\pi_{1}\left(S_{g, 1}\right)$ and if a_{i}, b_{i} is a symplectic basis of $H_{1}\left(S_{g, 1}\right)$, then $\mathrm{gr} \pi$ is the free Lie algebra on a_{i}, b_{i}.

The associated graded of $\pi_{1}\left(S_{g}\right)$ is the quotient of the former by the relation

$$
\sum\left[a_{i}, b_{i}\right]=0
$$

2. JOHNSON HOMOMORPHISMS

Let A be a subgroup of $\operatorname{Aut}(G)$. Since Γ^{m} is characteristic, there is a morphism

$$
A \longrightarrow \operatorname{Aut}\left(G / \Gamma^{m}\right)
$$

Definition 2.1. The Johnson filtration is defined by:

$$
J^{m}:=\operatorname{ker}\left(A \longrightarrow \operatorname{Aut}\left(G / \Gamma^{m+1}\right)\right)
$$

The Torelli group of A is $T_{A}:=J^{1}$, a normal subgroup of A. The symmetry group of T_{A} is $A_{0}=A / T_{A}$.
Proposition 2.2 (Kaloujnine). J is an N series on T_{A}.
For a graded Lie algebra \mathfrak{g}, let $\operatorname{Der}^{+}(\mathfrak{g})$ be the Lie algebra of positive derivations

$$
\operatorname{Der}^{+}(\mathfrak{g}):=\bigoplus_{m \geq 1} \operatorname{Der}^{m}(\mathfrak{g})
$$

where $\operatorname{Der}^{m}(\mathfrak{g})$ is the space of derivations of \mathfrak{g} which maps \mathfrak{g}^{n} to \mathfrak{g}^{n+m}. Note this Lie algebra is itself graded. The following is an infinitesimal analog of the action of T_{A} on G :

Theorem 2.3 (Johnson, Papadima). There is a well-defined, injective map of graded Lie algebra

$$
\tau: \operatorname{gr}_{J}\left(T_{A}\right) \hookrightarrow \operatorname{Der}^{+}(\operatorname{gr} G)
$$

called the Johson homomorphism, defined as follow: let $a \in J^{m}, x \in \Gamma^{n}$, then

$$
\bar{a} \cdot \bar{x}:=\overline{a(x) x^{-1}} .
$$

Sketch of proof. Let $a \in J^{m}, x \in \Gamma^{n}$. First we claim that

$$
a(x) \equiv x \quad \bmod \Gamma^{m+n}
$$

For $n=1$ this is the definition, for $n \geq 1$ this is proved by induction. Therefore,

$$
a(x) x^{-1} \in \Gamma^{m+n} .
$$

Composing with the quotient map we get a map

$$
\Gamma^{n} \longrightarrow \mathrm{gr}^{m+n} \mathrm{G}
$$

For x, y in Γ^{n}, a direct computation shows that

$$
a(x y)(x y)^{-1} \equiv\left(a(x) x^{-1}\right)\left(a(y) y^{-1}\right) \quad \bmod \Gamma^{m+n+1}
$$

hence this descends to an additive map

$$
\mathrm{gr}^{n} G \longrightarrow \mathrm{gr}^{m+n} G
$$

By definition this map is the identity iff

$$
\forall x \in \Gamma^{n}, a(x) x^{-1} \in \Gamma^{m+n+1}
$$

For $n=1$ this says precisely that $a \in J^{m+1}$, and conversly every map in J^{m+1} satisfies this for all n. Hence this map is injective. The fact that a is a derivation, and that this map is a Lie algebra map follows from painful commutator computations.

Remark 2.4. In a way the Johnson filtration is tailor made to make this map injective (it generally isn't for the lower central series).

The action of A on T_{A} by conjugation descends, essentially by construction, to an action of A_{0} on $\mathrm{gr}_{J}\left(T_{A}\right)$ by graded Lie algebra automorphisms: for $a \in A, x \in T_{A}$,

$$
\bar{a} \cdot \bar{x}:=\overline{a x a^{-1}} .
$$

Likewise, it acts on gr G by

$$
\bar{a} \cdot \bar{x}:=\overline{a(x)},
$$

hence on $\operatorname{Der}(\operatorname{gr} G)$ by the adjoint action:

$$
\bar{a} \cdot d:=\bar{a} \circ d \circ \bar{a}^{-1}
$$

where \circ is composition of endomorphisms.
Proposition 2.5. The Johnson homomorphism is A_{0}-equivariant.

3. Application to the actual Torelli groups

Let $S=S_{g, 1}$ with a point \star marked on the boundary and let $\pi=\pi_{1}(S, \star)$. Let a_{i}, b_{i} be a symplectic basis of $H=H_{1}(S)$ and let $\omega=\sum a_{i} \wedge b_{i}$ the bivector associated with the symplectic form. Let $\zeta=[\partial S] \in \pi$ and recall the following classical
Theorem 3.1 (Dehn). The natural map

$$
\operatorname{Mod}(S) \longrightarrow \operatorname{Aut}(\pi)
$$

is injective, and its image is the subgroup of automorphisms which fix ζ.
Identifying $\operatorname{Mod}(S)$ with its image, the associated Torelli group in the sense of the previous section is the usual Torelli group T, and the symmetry group A_{0} is $\operatorname{Sp}(H)$.
Remark 3.2. One striking illustration of how useful it is to "linearize" T in this way is that, as a consequence of a highly non-trivial theorem of Hain, we know that the Lie algebra $\mathbb{Q} \otimes \mathrm{gr} T$ is finitely presented (with an explicit presentation) for $g \geq 6$.
Remark 3.3. Since $\operatorname{Der}^{+}(\operatorname{gr} \pi)$ is torsion-free, and since $\operatorname{gr}_{J} T$ embeds into it, it is torsion free as well, which means that

$$
J^{m}=J_{\mathbb{Q}}^{m}
$$

and that

$$
\Gamma_{\mathbb{Q}}^{m}(T) \subset J^{m}
$$

On the other hand, it is known that the abelianization of T has torsion so the map

$$
\operatorname{gr} T \longrightarrow \operatorname{gr}_{J} T
$$

is already not injective in degree 1, i.e.

$$
\Gamma^{2} \subsetneq J^{2}
$$

Johnson's theorem below implies however that $\Gamma_{\mathbb{Q}}^{2}(T)=J^{2}$. One might hope this is true for $m \geq 3$, but it's not: Hain has shown that the kernel of

$$
\Gamma_{\mathbb{Q}}^{2}(T) / \Gamma_{\mathrm{Q}}^{3}(T) \longrightarrow J^{2} / J^{3}
$$

is isomorphic to \mathbb{Z}.
Remark 3.4. It's well known that for finitely generated free groups, one has

$$
\bigcap_{m \geq 1} \Gamma_{\mathbb{Q}}^{m}=\{1\}
$$

i.e. those are residually torsion-free-nilpotent. It implies at once that in the Torelli group

$$
\bigcap_{m \geq 1} J^{m}=\{1\}
$$

Since $\Gamma_{\mathbb{Q}}^{m}(T) \subset J^{m}, T$ is itself residually-torsion-free nilpotent. This has cool consequences: it is in particular torsion free and residually nilpotent (but this is much stronger), residually p for all p, residually finite and bi-orderable.

Remark 3.5. One can check that the Johnson homomorphism in that case actually lands in the Lie algebra of symplectic derivations, i.e. those mapping

$$
\omega=\sum a_{i} \wedge b_{i} \in H \subset \operatorname{gr} \pi
$$

to 0 . This is the infinitesimal counterpart of the fact that the mapping class group action on π preserves ζ.

Recall that T is generated by bounding pairs, i.e. elements of the form $T_{\alpha} T_{\beta}^{-1}$ where T_{α} is the Dehn twist along α and α, β are disjoint non-separating simple closed curves such that $[\alpha]=[\beta] \neq 0$. Recall also that if γ is a bounding simple closed loop then $T_{\gamma} \in T$.
Theorem 3.6 (Johnson). The images of the elements T_{γ}, γ a bounding simple closed curve, in $H_{1}(T)$ are 2-torsion, hence their image through τ_{1} is 0 . In fact they generate the kernel of the lift

$$
T \longrightarrow \operatorname{Der}^{1}(\operatorname{gr} \pi)
$$

Theorem 3.7 (Johnson). Let S^{\prime} be the component of $S \backslash(\alpha \cup \beta)$ which doesn't contain the base point. Let k be the genus of S^{\prime} and let $\left\{a_{i}, b_{i}\right\}$ be a symplectic basis of H such that $[\alpha]=\left[a_{k+1}\right]$, and such that $\left\{a_{1}, b_{1}, \ldots, a_{k}, b_{k}, a_{k+1}\right\}$ is a basis of $H_{1}\left(S^{\prime}\right)$. Then

$$
\tau_{1}(f)=\left(\sum_{i=1}^{k} a_{i} \wedge b_{i}\right) \wedge a_{k+1}
$$

Since the Lie bracket is antisymmetric, and since there is no Jacobi relation in degree 2, the free \mathbb{Z}-module $\mathrm{gr}_{2} \pi$ can be identified with $\wedge^{2} H$. Therefore any linear map $H \rightarrow \wedge^{2} H$ extends uniquely to a degree 1 derivation of $\mathrm{gr} \pi$, and using the symplectic form on H to identify $H \cong H^{*}$, we get an $\operatorname{Sp}(H)$-equivariant embedding

$$
\wedge^{3} H \hookrightarrow H \otimes \wedge^{2} H \cong H^{*} \otimes \wedge^{2} H \cong \operatorname{Der}^{1}(\operatorname{gr} \pi)
$$

Theorem 3.8 (Johnson). The first Johnson homomorphism

$$
\tau_{1}: H_{1}(T) \longrightarrow \operatorname{Der}^{1}(\operatorname{gr} \pi)
$$

lands in $\wedge^{3} H$, and induces an isomorphism

$$
H_{1}(T, \mathbb{Q}) \cong \wedge^{3} H \otimes \mathbb{Q}
$$

It descends to an isomorphism

$$
H_{1}\left(T_{g}, \mathbf{Q}\right) \cong\left(\wedge^{3} H \otimes \mathbf{Q}\right) /\langle h \wedge \omega, h \in H\rangle
$$

where T_{g} is the Torelli group of the closed surface S_{g} and π_{g} its fundamental group.

4. Geometric Johnson homomorphisms

4.1. Abel-Jacobi map. Let \mathbb{T} be the complex torus $\mathbb{C}^{g} / \mathbb{Z}^{2 g}$. Since this is a $K\left(\mathbb{Z}^{2 g}, 1\right)$, the abelinanization map $\pi \rightarrow \mathbb{Z}^{2 g}$ determines a unique homotopy class of maps

$$
S \longrightarrow \mathbb{T}
$$

The Abel-Jacobi map can be thought of as a way of picking representatives in that homotopy class in a way that interacts well with the action of T, by using complex structures on S. Fix once and for all a surface \bar{S} obtained by gluing a disc to the boundary of S and fix a marked point inside that disc with a unit tangent vector at it. By a complex structure on S we'll mean a pair of a marked compact Riemann surface C and of a diffeomorphism $h: C \xrightarrow{\sim} \bar{S}$ which preserves the basepoint and its tangent vector. Two complex structures (C, h) and $\left(C^{\prime}, h^{\prime}\right)$ on S are isotopic if $h^{-1} \circ h^{\prime}$ is isotopic (rel. basepoint and tangent vector) to a holomorphic diffeomorphism.

Recall that the cotangent bundle of C has a canonical holomorphic structure, called the canonical line bundle K, so that global sections $H^{0}(C, K)$ are identified with holomorphic one forms on C. It is well-known that this space is isomorphic as a real vector space to $H^{1}(\bar{S}, \mathbb{R})$.

If α is such a form, and γ a path on C, define

$$
\int_{\gamma} \alpha:=\int_{0}^{1} \gamma^{*} \alpha \in \mathbb{C}
$$

Integration of forms gives a non-degenerate pairing

$$
H_{1}(\mathrm{C}, \mathbb{C}) \times H^{0}(\mathrm{C}, \mathrm{~K}) \longrightarrow \mathbb{C}
$$

hence an embedding $H_{1}(C) \subset H^{0}(C, K)^{*}$.
Definition 4.1. The Jacobian of C is $J(C):=H^{0}(C, K)^{*} / H_{1}(C)$. The choice of a symplectic basis of H_{1} induces an identification $J(C) \cong \mathbb{T}$. The Abel-Jacobi map

$$
J: C \longrightarrow J(C)
$$

is defined for $y \in C$ by picking a path γ from the marked point to y, and mapping y to

$$
\alpha \mapsto \int_{\gamma} \alpha
$$

Note that if γ^{\prime} is another path to y, then $\int_{\gamma^{-1} \gamma^{\prime}} \alpha$ is 0 in $J(C)$, hence this is well-defined. It's also clear that this map induces the abelianization of π.
4.2. Bundles over the Torelli space. Let Teich be the Teichmüller space, whose points are sotopy classes of complex structures on S as above. An important fact about

Theorem 4.2. The space Teich is homeomorphic to $\mathbb{R}^{6 g-3}$ and carries a free action of the Torelli group T.

Definition 4.3. The Torelli space \mathcal{T} is the quotient Teich / T.
A point in \mathcal{T} is thus a pair (a diffeomorphism class of complex structures on S, a symplectic basis of $H_{1}(S)$). Note it carries a residual action of Sp by changing the basis. It follows from the theorem that \mathcal{T} is a $K(T, 1)$, hence we have:

$$
H_{*}(\mathcal{T}) \cong H_{*}(T)
$$

Let $\mathcal{T}^{*}=(S \times$ Teich $) / T$ and let

$$
p: \mathcal{T}^{*} \longrightarrow \mathcal{T}
$$

be the projection. This is the homotopy quotient of S by T, i.e. it is the universal fiber bundle over \mathcal{T} with fiber over any point identified with S. Let now \mathcal{J}^{*} be the trivial bundle

$$
(\mathbb{T} \times \text { Teich }) / T \longrightarrow \mathcal{T}
$$

where T acts on \mathbb{T} trivially (hence this is indeed a trivial bundle). Fixing once and for all a symplectic basis of $H_{1}(S)$, for any $(C, h) \in$ Teich, using h this canonically fixes an identification $J(C) \simeq \mathbb{T}$. Therefore the Abel-Jacobi maps assemble into a map

$$
S \times \text { Teich } \longrightarrow \mathbb{T} \times \text { Teich }
$$

which is clearly T-equivariant, since by construction the action of T preserves any choice of a symplectic basis of $H_{1}(S)$. In other words, we get an Sp-equivariant bundle map

$$
\mathcal{T}^{*} \longrightarrow \mathcal{J}^{*}
$$

Composing this map with the projection $\mathcal{J}^{*} \rightarrow \mathbb{T}$ we get an Sp-equivariant diagram

$$
\mathcal{T} \longleftarrow \mathcal{T}^{*} \longrightarrow \mathbb{T}
$$

Definition 4.4. Let $f: M \longrightarrow N$ be a smooth map between compact oriented manifolds of dimensions $m+k$ and m respectively. The pull-back along f in homology is the composition

$$
f^{*}: H_{i}(N) \xrightarrow{\text { Poincaré duality }} H^{m-i}(N) \xrightarrow{\text { pull-back along } f} H^{m-i}(M) \xrightarrow{\text { Poincaré duality }} H_{i+k}(M)
$$

Definition 4.5. Let $n=6 g-3$ and $1 \leq i \leq n$. The ith geometric Johnson homomorphism is the composition

$$
\tau_{i}^{\prime}: H_{i}(\mathcal{T}, \mathbb{Q}) \xrightarrow{p^{*}} H_{i+2}\left(\mathcal{T}^{*}, \mathbb{Q}\right) \longrightarrow H_{i+2}(\mathbb{T}, \mathrm{Q}) \cong \bigwedge^{i+2} H_{\mathrm{Q}}
$$

Theorem 4.6 (Johnson, Church-Farb). $\tau_{1}^{\prime}=\tau_{1}$.
4.3. Mapping tori and τ_{1}^{\prime}. There is a fun way to compute $\tau_{1}=\tau_{1}^{\prime}$ this way which bypass the use of pull-back in homology. Let $\sigma \in H_{i}(\mathcal{T})$. Suppose we are given a map $B \longrightarrow \mathcal{T}$ and a class $x \in H_{i}(B)$ whose image in $H_{i}(T$ is σ.

Let f be a diffeomorphism of S lifting an element of T and fix a basepoint $x \in \mathcal{T}$. By definition f induces a loop in \mathcal{T}, i.e. a map $\gamma: S^{1} \longrightarrow \mathcal{T}$. We can then form the pull-back bundle, whose total space is

$$
M_{f}=\left\{(x, t) \in \mathcal{T}^{*} \times S^{1} \mid p(x)=\gamma(t)\right\}
$$

Note that this is nothing but the mapping torus of f. Since f acts trivially on $H_{1}(S)$, there is a canonical decomposition

$$
H_{1}\left(M_{f}\right)=H_{1}(S) \times H_{1}\left(S^{1}\right)
$$

Email address: adrien.brochier@imj-prg.fr

