Some compact connected oriented surface of genus of with b boundary components and in principles

Mod (Sg, m) = group of isotopy classes of orientation preaving homeomorphisms of S that fix dS = TT. Homeo; (S)

Proh : ve con replace homeos by diffeos

· we can replace isotopy classes with homotopy classes

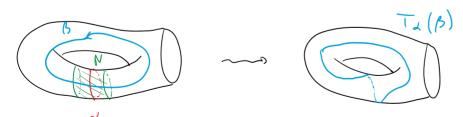
We will define generators for Mod (5):

Delm trist: for our annulus $A = S^1 \times I$ Thirst map $T : A \longrightarrow A$ (e²ⁱ⁰, t) \longmapsto (e^{2i(d+t)}, t)

visually: "Two left"

for a general surface: fix a simple closed curve (scc) & c S and a regular neighborhood N of & and an orientation-preserving homeo Q A -> N => Dehn twist along α : T_{α} : S_{α} $S_{$

For a scc B, To outs like this:



To E Mod (5) does not depend on the Choice of Nor P it only depends on the isotopy class of &

Change of coordinate punciple

Recall: an scc is separating if S, & is disconnected

Thus. If α and β one non-separating, then there is an orientation-preserving homeo $\theta: S \to S$ st $\phi(\alpha) = \beta$

- If d and β are separating and if the cut surfaces $S \setminus d$, $S \setminus \beta$ are homeo, then there is an or-preserving homeo $Q: S \longrightarrow S A Q(d) = \beta$
- If (d, B) and (d', B') are pair of sec in S of i(d, B) = i(d', B')and Si(d, B) is homeo to Si(d', B') then there is an or-preserving homeo of S taking (d, B) to (d', B')

Some facts about Dehn triests:

trup If I is a scc homotopic to a point or puncture of S Hun T is trivial (in Mod (S))

nf

If we trust along of we can "untiled" in the distrib bounded by of lounded a dish

prop If α is not homotopic to a point or puncture, then T_{α} is not travid If α If α is not separating. Then we can find $\alpha \sec \beta + i(\alpha, \beta) = 1$ by the Change of coordinates principle

Thun
$$i(T_{\lambda}(\beta), \beta) = 1$$

 $\Rightarrow T_{\lambda}(\beta) \neq \beta$

Tary

If d is separating and essential (not homotopic to boundary comp or puntum) then we can find β at $i(\alpha, \beta) = 2$

Cohomology of Torelli groups Page 2

thun we can find $\beta + i(\alpha, \beta) = 2$ thun $i(T_{\alpha}(\beta), \beta) = 4$ $\Rightarrow T_{\alpha}(\beta) \neq \beta$

* If Δ is homotopic to a boundary component let $\overline{5}$ be the double of $S = S \cup S$ then in $\overline{5}$, Δ is essential \Rightarrow we can conclude by the first two cases (b/c if T_{Δ} were trivial in S, it would be trivial in $\overline{5}$ too)

prop If A, B one essential, then $\forall b \in \mathbb{Z}$, $i(T_a^{b}(B), B) = |b| \cdot i(a, B)^2$ \Rightarrow Debut trusts one of infinite order in Mod(S)

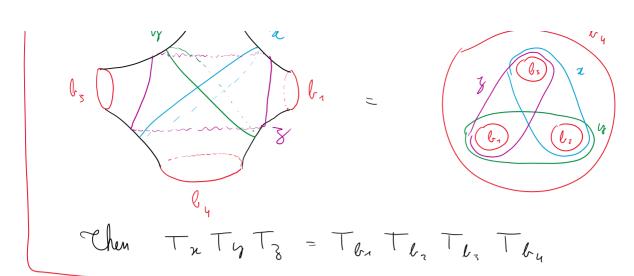
from $\forall d, S, \forall i, s \in \mathbb{Z}$, $\forall i \in \mathbb{Z}$ and i = sfrom $\exists f \in Mod(S)$, then $\exists f \in \mathbb{Z}$ from $f = \exists f \in \mathcal{A}$ (In any $f \neq 0$)

from If d, β one non-separating scc, then T_d and T_d are conjugate in Mod (s) of By the change of coordinate principle, $\exists f \in Mod(s)$ of $f(d) = \beta$ \Rightarrow follows from previous results

From i(A,B) = 0 \iff $T_A(B) = B$ \iff $T_A T_B = T_B T_A$ $i(A,B) = 1 \iff T_A T_B T_A = T_B T_A T_B \quad ("braid relation")$

In general, if $S' \subset S$ is a subsurface, then there is a homomorphism $Mod(S') \to Mod(S)$ If $g \ge 2$, then S contains a subsurface homeo to S_o^4 (where w/4 boundary components)

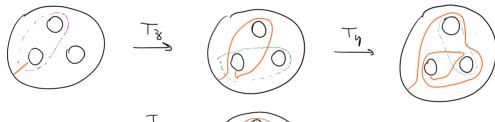
from (Lantern relation) Suppose that we have an embedding 5% so S and consider the image in S of the seven curves below:



proof ("Alexander method") The action of an element of Mod (S) is often determined by its action of a well-chosen collection of curves and ares in S

For So take three ares:

It is enough to check that the lanten relation holds for these three arcs



T_M

to the name for The The The The same are in the end

Co be continued next week!