Α

↓i

В

X

 $\downarrow p$

Y

Homotopy II: Exam

M2 Fundamental Mathematics

Duration: 3 hours. Printed or handwritten notes are allowed. Electronic devices are forbidden. The exam is 2 pages long. Write in French or English and justify your answers.

Exercise A. Uniqueness of lifts

Let \mathcal{M} be a model category and let $A, Y \in \mathcal{M}$ be two objects. The category $\mathcal{M}_{A,Y}$ has as objects triples $(X, f: A \to X, g: X \to Y)$, and $\operatorname{Hom}_{\mathcal{M}_{A,Y}}((X, f, g), (X', f', g')) \coloneqq \{h: X \to X' \mid hf = f', g'h = g\}.$

- 1. Prove that $\mathcal{M}_{A,Y}$ is a model category with fibrations, cofibrations, and weak equivalences being the same as in \mathcal{M} .
- 2. Consider a commutative square as on the side, where *i* is a cofibration and *p* is an acyclic fibration. Prove that any two lifts $l, l': B \to X$ (that fit in the commutative square) are homotopic when seen as morphism in $\mathcal{M}_{A,Y}$. (Hint: factor $B \cup_A B \to B$ using MC5.)

Exercise B. Sharp morphisms and right properness

Let \mathcal{M} be a model category. A morphism $p: X \to Y$ is called *sharp* when, for any commutative diagram as displayed on the side, if both squares are pullbacks $(A = A' \times_{B'} B, A' = B' \times_Y X)$ and j is a weak equivalence, then i is a weak equivalence.

1. Prove that every fibration is sharp if and only if \mathcal{M} is *right proper*, i.e., the pullback of a weak equivalence along a fibration is a weak equivalence.

Consider the category $I = \{0 \rightarrow 2 \leftarrow 1\}$ and equip $\mathcal{M}^I = \operatorname{Fun}(I, \mathcal{M})$ with the injective model structure (weak equivalences and cofibrations are defined object-wise).

2. Prove that a diagram $\{X \to Z \leftarrow Y\} \in \mathcal{M}^I$ is fibrant if and only if Z is fibrant and both maps in the diagram are fibrations.

For the next two questions, let us assume that ${\mathcal M}$ is right proper.

- 3. Prove that for $\{X \to Z \leftarrow Y\} \in \mathcal{M}^I$, if $X \to Z$ a fibration and X, Y, Z are fibrant, then the pullback $X \times_Z Y$ is weakly equivalent to the homotopy pullback (= holim_I of the diagram).
- 4. Prove that the same conclusion holds if we assume that $X \rightarrow Z$ is sharp rather than a fibration.

Let $\mathcal{M} = Ch_{\geq 0}(\mathbb{Z})$, with the projective model structure. Let us moreover equip $\mathcal{M}^{I} = (Ch_{\geq 0}(\mathbb{Z}))^{I}$ with the injective model structure of diagrams as above.

- 5. Let $\{X \to Z \leftarrow Y\}$ be a diagram of \mathbb{Z} -modules such that $X \to Z$ is surjective. Prove that ker $(X \to Z)$ is isomorphic to ker $(X \times_Z Y \to Y)$.
- 6. Prove that $Ch_{\geq 0}(\mathbb{Z})$ is right proper (hint: use the five lemma).
- 7. Let $d \ge 1$ be an integer, let M be a \mathbb{Z} -module, and let $\Sigma^d M$ be M viewed as a chain complex concentrated in degree d. Compute the homotopy limit of the diagram $\{0 \rightarrow \Sigma^d M \leftarrow 0\}$.

Let $\mathcal{M} = s\mathcal{S}et$ be endowed with the usual model structure. Let $\pi: \Lambda_1^2 \to \Delta^1$ be the unique simplicial map which is given on vertices by $\pi(0) = 0$, $\pi(1) = \pi(2) = 1$.

- 8. Prove that π is **not** a Kan fibration.
- 9. Construct a map $\sigma: \Delta^1 \to \Lambda_1^2$ such that $\pi \sigma = id_{\Delta^1}$ and $\sigma \pi$ is homotopic to the identity of Λ_1^2 .

10. \star Prove that π is sharp.

Exercise C. Model category of equivalence relations

Let $\mathcal{E}q$ be the category whose objects are pairs (X, \sim) where X is a set and \sim is an equivalence relation on X, and whose morphisms are maps which preserve equivalence, i.e.:

$$\operatorname{Hom}_{\mathcal{E}q}((X,\sim_X),(Y,\sim_Y)) \coloneqq \{f: X \to Y \mid \forall x, x' \in X, x \sim_X x' \Longrightarrow f(x) \sim_Y f(x')\}.$$

We will often allow ourselves the notational shortcut $X = (X, \sim_X), Y = (Y, \sim_Y)$, etc.

1. Prove that the categorical product is given by $(X, \sim_X) \times (Y, \sim_Y) = (X \times Y, \sim_{X \times Y})$, where:

$$(x, y) \sim_{X \times Y} (x', y') \Leftrightarrow (x \sim_X x' \text{ and } y \sim_Y y').$$

2. Let $A = \{a, b, c\}$ with $a \sim b \nsim c$; $B = \{x, y\}$ with $x \sim y$; and $C = \{u, v\}$ with $u \nsim v$. Let $f: C \to A$ be given by f(u) = b, f(v) = c, and $g: C \to B$ be given by g(u) = x and g(v) = y. Prove that in the pushout $A \cup_C B$, one has $a \sim c$. (A picture can help.)

For $X \in \mathcal{E}q$ and $x \in X$, we let $[x] = \{x' \in X \mid x' \sim_X x\}$ and $(X/\sim) \coloneqq \{[x] \mid x \in X\}$. For any $X, Y \in \mathcal{E}q$, a morphism $f: X \to Y$ in $\mathcal{E}q$ is called a:

- Cofibration if $f: X \to Y$ is injective as a map of sets.
- Fibration if, for all $x \in X$, the restriction $f|_{[x]}: [x] \to [f(x)]$ is surjective.
- Weak equivalence if the induced map on the quotient $f_*: (X/\sim) \to (Y/\sim)$ is bijective.
- 3. Let $j: \{0\} \rightarrow (\{0, 1\}, \sim)$ with $0 \sim 1$. Prove that a morphism is a fibration if, and only if, it has the right lifting property against j. (You may not yet assume that $\mathcal{E}q$ is a model category.)
- 4. Let $i_0: \emptyset \to \{0\}$ and let $i_1: (\{0, 1\}, \sim_1) \to (\{0, 1\}, \sim_2)$ where $0 \not\sim_1 1$ and $0 \sim_2 1$. Prove that a morphism is an acyclic fibration if, and only if, it has the right lifting property against i_0 and i_1 .
- 5. Prove that $\mathcal{E}q$ is a cofibrantly generated model category, with generating cofibrations $\mathcal{I} = \{i_0, i_1\}$ and generating acyclic cofibrations $\mathcal{J} = \{j\}$.

Let an equivalence relation \approx on Hom_{$\mathcal{E}q$}(X, Y) be defined, for $f, g: X \to Y$, by:

$$f \approx g \Leftrightarrow (\forall x \in X, f(x) \sim_Y g(x)).$$

In what follows, we will denote by [X, Y] the hom-set equipped with this equivalence relation.

- 6. Prove that two morphisms f, g are homotopic in $\mathcal{E}q$ if and only if $f \approx g$.
- 7. Prove that the functor $\pi: \mathcal{E}q \to \mathcal{S}et$, given on objects by $X \mapsto X/\sim_X$, induces an equivalence of categories $\operatorname{Ho}(\mathcal{E}q) \simeq \mathcal{S}et$.
- 8. Prove that the pullback of a weak equivalence along a fibration is a weak equivalence.
- 9. \star Prove that the pushout of a weak equivalence along a cofibration is a weak equivalence.
- 10. Prove that there is an isomorphism in $\mathcal{E}q$, natural in $A, X, Y \in \mathcal{E}q$:

$$[A, [X, Y]] \cong [A \times X, Y].$$

Let $i: A \to B$ be a cofibration and $p: X \to Y$ be a fibration (in $\mathcal{E}q$). Consider the "pullback-corner":

$$(i^*, p_*) \colon [B, X] \to [A, X] \times_{[B,Y]} [A, Y]$$

11. Prove that (i^*, p_*) is a fibration in $\mathcal{E}q$.

12. Prove that this fibration is acyclic if either one of the morphisms i or p is acyclic.