Homotopy II : Exam

Najib Idrissi, Université de Paris

March 5th 2021, 14:00–17:00

Duration : 3 hours. Printed or handwritten lecture notes are allowed. Electronic devices are forbidden. Please read the whole exam before starting.

Exercice 1. Let C be a category and \mathcal{W} a class of morphisms. One says that \mathcal{W} satisfies property "2 out of 6" (2P6) if, given three composable morphisms *f*, *g*, and *h*,

 $\{h\circ g,\,g\circ f\}\subseteq \mathcal{W} \implies \{f,\,g,\,h,\,h\circ g\circ f\}\subseteq \mathcal{W}.$

- (1A) Prove that if \mathcal{W} satisfies 2P6 and $\forall X$, $id_X \in \mathcal{W}$, then \mathcal{W} contains all isomorphisms.
- (1B) Prove that if \mathcal{W} satisfies 2P6 then it satisfies MC2 ("2 out of 3").
- (1C) Prove that if \mathcal{W} satisfies MC2 and $\{h \circ g, g \circ f\} \subseteq \mathcal{W} \implies g \in \mathcal{W}$, then \mathcal{W} satisfies 2P6.
- (1D) Prove that the class of isomorphisms in an arbitrary category satisfies 2P6.
- (1E) Deduce that the weak equivalences of a model category satisfy 2P6.
- **Exercice 2.** Let C be a category equipped with two model structures $(\mathcal{W}_1, \mathcal{C}_1, \mathcal{F}_1)$ et $(\mathcal{W}_2, \mathcal{C}_2, \mathcal{F}_2)$. Assume that $\mathcal{W}_1 \subseteq \mathcal{W}_2$ et $\mathcal{F}_1 \subseteq \mathcal{F}_2$. We call "mixed structure" $(\mathcal{W}_m, \mathcal{C}_m, \mathcal{F}_m)$ defined by $\mathcal{W}_m = \mathcal{W}_2$ et $\mathcal{F}_m = \mathcal{F}_1$. The mixed cofibrations, \mathcal{C}_m , are defined by a lifting property.
 - (2A) Prove that $C_2 \subseteq C_m \subseteq C_1$.
 - (2B) Prove that $C_m \cap \mathcal{W}_m = C_1 \cap \mathcal{W}_1$. (Indication : MC3+MC5.)
 - (2C) Prove that the mixed structure is a model structure.
 - (2D) One says that *f* is a *special* mixed cofibration if there exists $i \in C_2$ and $j \in C_1 \cap W_1$ such that $f = j \circ i$. Prove that any special mixed cofibration is a mixed cofibration, and that any mixed cofibration is a retract of a special mixed cofibration.
 - (2E) One says that a model category is *left proper* if the pushout of a weak equivalence along a cofibration is a weak equivalence. Deduce from (2D) that if structure 2 is left proper, then so is the mixed structure.
 - (2F) Between which ones of the three model structures is id_C a left or right Quillen adjoint?
- **Exercice 3.** A Reedy category is a category R equipped with two subcategories \vec{R} and \hat{R} that contain all objects and a map deg : ob $R \rightarrow \mathbb{N}$ such that :
 - if $f \in \vec{R}(\alpha, \beta)$, then $(\alpha = \beta \text{ and } f = id_{\alpha})$ or deg $\beta > deg \alpha$;
 - if $f \in \hat{R}(\alpha, \beta)$, then $(\alpha = \beta \text{ and } f = id_{\alpha})$ or deg $\beta < \deg \alpha$;
 - any morphism f factors uniquely as $\vec{f} \circ \vec{f}$ where $\vec{f} \in \vec{R}$ and $\vec{f} \in \vec{R}$.
 - (3A) Let $R_{\leq n}$ be the subcategory of objects of degree $\leq n$. Prove that $R_{\leq 0}$ is discrete.

(3B) Prove that a finite partially ordered set is a Reedy category. Prove that the simplex category Δ is Reedy, where $\vec{\Delta}$ is composed of injections, $\hat{\Delta}$ of surjections, and deg = id_N. Prove that the opposite of a Reedy category is Reedy. Montrer que la catégorie opposée d'une catégorie de Reedy est de Reedy.

Let $\alpha \in \mathbb{R}$. The *latching* category $L_{\alpha}\mathbb{R}$ has as objects the morphisms $f \in \mathbb{R}(\beta, \alpha)$ où $\beta \neq \alpha$. If $f : \beta \to \alpha$, $f' : \beta' \to \alpha$, then $\operatorname{Hom}_{L_{\alpha}\mathbb{R}}(f, f') = \{g \in \mathbb{R}(\beta, \beta') | f'g = f\}$. Dually, the objects of the *matching* category $M_{\alpha}\mathbb{R}$ are the morphisms $f \in \mathbb{R}(\alpha, \beta)$ où $\beta \neq \alpha$.

(3C) Describe $L_{[2]}\Delta^{\text{op}}$ and $R_{[2]}\Delta^{\text{op}}$.

Let $X \in C^R$ be a diagram indexed by R, where C is a (co)complete category. We define the *lat-ching* objects by the colimits $L_{\alpha}X := \operatorname{colim}_{f:\beta \to \alpha \in L_{\alpha}R} X_{\beta}$. Dually, its *matching* objects are $M_{\alpha}X := \lim_{f:\alpha \to \beta \in M_{\alpha}R} X_{\beta}$. (The empty colimit is the initial object, the empty limit is the terminal object.)

- (3D) Let $X_{\bullet} \in \operatorname{Set}^{\Delta^{\operatorname{op}}}$ be a simplicial set. Describe $M_{[n]}X_{\bullet}$ and $L_{[n]}X_{\bullet}$ for $n \leq 2$.
- (3E) Let $X : \mathbb{R}_{\leq n-1} \to \mathbb{C}$ be a diagram (where $n \geq 1$) and $\alpha \in \mathbb{C}$ an element of degree n. Check that $L_{\alpha}X$ and $M_{\alpha}X$ are still well-defined and construct morphisms $c_{\alpha} : L_{\alpha}X \to M_{\alpha}X$ natural in α .
- (3F) Let $X : \mathbb{R}_{\leq n-1} \to \mathbb{C}$ be a diagram (where $n \geq 1$). Prove that the data of an extension of X to $\mathbb{R}_{\leq n}$ is equivalent to the data of objects X_{α} for each α of degree n and of morphisms $l_{\alpha} : L_{\alpha}X \to X_{\alpha}$ and $m_{\alpha} : X_{\alpha} \to M_{\alpha}X$ such that $m_{\alpha}l_{\alpha} = c_{\alpha}$.
- (3G) Let $X, Y \in C^{\mathbb{R}}$ be two diagrams and $\varphi : X \Rightarrow Y$ a natural transformation. Construct morphisms $L_{\alpha}^{\operatorname{rel}}\varphi : X_{\alpha} \cup_{L_{\alpha}X} L_{\alpha}Y \to Y_{\alpha}$ and $M_{\alpha}^{\operatorname{rel}}\varphi : X_{\alpha} \to M_{\alpha}X \times_{M_{\alpha}Y} Y_{\alpha}$ natural in α . (One can use the morphisms m_{α}, l_{α} constructed in (3F).)

We now assume that C is a model category. We define a model structure (called the Reedy structure) on C^R by setting that a natural transformation φ is : a Reedy equivalence if each φ_{α} is a weak equivalence; a Reedy cofibration if each $L_{\alpha}^{\text{rel}}\varphi$ is a cofibration; a Reedy fibration if each $M_{\alpha}^{\text{rel}}\varphi$ is a fibration.

- (3H) Let $\phi : X \to Y$ be a Reedy cofibration. Prove that the induced morphism $L_{\alpha}X \to L_{\alpha}Y$ is a cofibration. (Hint : prove that it has the LLP with respect to acyclic fibrations by construction the lift by induction.)
- (3I) Deduce that if $\varphi : X \to Y$ is a Reedy cofibration, then φ_{α} is a cofibration for every α . (Hint : use the fact that φ_{α} factors as $X_{\alpha} \to X_{\alpha} \cup_{L_{\alpha}X} L_{\alpha}Y \xrightarrow{L_{\alpha}^{rel}\varphi} Y_{\alpha}$.)
- (3J) Deduce the existence of Quillen adjunctions between the Reedy structure and projective/injective structures, if they exist.
- (3K) Prove that a Quillen adjunction $F : C \subseteq D : G$ induces Quillen adjunctions between the Reedy structures.
- **Exercice 4.** Let *A* be a 1-connected CDGA and $\alpha, \beta, \gamma \in H^*(A)$ be three classes such that $\alpha\beta = \beta\gamma = 0$. We consider the set of elements of the form $vz - (-1)^{|x|}xw \in A$ where $\alpha = [x], \beta = [y], \gamma = [z]$ (for cocycles x, y, z), dv = xy and dw = yz.
 - (4A) Prove that $vz (-1)^{|x|}xw$ is a cocycle and that its class in $H^*(A)/I$, where $I = (\alpha, \gamma)$ is the ideal generated by α and γ , is independent of the choices of x, y, z, v, w.
 - (4B) Assume that *A* is quasi-isomorphic to $H^*(A)$. let *M* be the minimal model of *A*. Why does there exist a direct quasi-isomorphism $\phi : M \to H^*(A)$?
 - (4C) Use ϕ to prove that the class of $vz (-1)^{|x|}xw$ is zero in $H^*(A)/I$.
 - (4D) Deduce from this an example of two CDGAs with the same cohomology that are not quasiisomorphic.